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Chapter 1. Installing and Using LazStats 

Introduction 

 

 LazStats, among others, are ongoing projects that I have created for use by students, teachers, 

researchers, practitioners and others.  There is no charge for use of these programs if downloaded directly from a 

World Wide Web site.  The software is a result of an “over-active” hobby of a retired professor (Iowa State 

University.)  I make no claim or warranty as to the accuracy, completeness, reliability or other characteristics 

desirable in commercial packages (as if they can meet these requirement also.)  They are designed to provide a 

means for analysis by individuals with very limited financial resources.  The typical user is a student in a required 

social science or education course in beginning or intermediate statistics, measurement, psychology, etc.  Some 

users may be individuals in developing nations that have very limited resources for purchase of commercial 

products. 

 

 LazStats was written using the Free Pascal/Lazarus compiler which may be downloaded from their 

site on the Internet.  Versions are available for multiple operating systems such as Windows, Linux, Mac OSX, etc.  

A program written for one platform can, theoretically, be compiled again for another platform.  The package is 

similar to the previously available Borland Delphi compiler. 

 

 While I reserve the copyright protection of these packages, I make no restriction on their 

distribution or use.  It is common courtesy, of course, to give me credit if you use these resources.  Because I do not 

warrant them in any manner, you should insure yourself that the routines you use are adequate for your purposes.  I 

strongly suggest analyses of textbook examples and comparisons to other statistical packages where available.  You 

should also be aware that I am constantly revising, correcting and updating LazStats.  For that reason, some of the 

images and descriptions in this book may not be exactly as you see when you execute the program.   I update this 

book from time to time to try and keep the program and text coordinated. 

 

Installing LazStats 

 

 LazStats has been successfully installed on Windows 95, 98, ME, XT, NT, Vista and Windows 7 

systems.  Other versions have been compiled by Dr. Chris Rorden and may be acquired by visiting my web site at 

http://www.statprograms4U.com.  A free setup package (INNO) has been used to package LazStats for installation 

on your computer.  Included in the setup file are the executable file and HTML files used to access help for various 

procedures.  At this time, only the LazStats version is receiving my attention for updates and revisions.  Individuals 

with other platforms that know some programming are encouraged to download Lazarus and my LazStats source 

code and build a version of LazStats for their own use. 

 

 To install LazStats for Windows, follow these steps: 

 

1. Connect to the internet address: http://www.statprograms4U.com 

 

2. Click on the link to the LazStats INNO setup file. It is about 10 megabytes in size. Your browser should 

automatically begin the download process to a directory on your computer. 

 

3. Once you have downloaded the INNO setup file, simply double click the name of the file and the setup will 

begin. 

  

4. By default, Windows will normally install LazStats in a programs directory on the C drive.  Several users 

have had success in using the INNO setup to place the program on a "memory stick" type of drive that plugs into the 

"USB" port.  You are encouraged to select a directory in your main user area such as the “Documents” directory.  

Simply follow the directions provided by the setup program and complete the installation.  When completed, there 

should be an entry in the Programs menu. 
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Starting LazStats 

 

 To begin using a Windows version of LazStats simply click the Windows “Start” button in the lower left portion of 

your screen, move the cursor to the “Programs” menu and click on the LazStats entry.  The initial screen you see 

will be a form that displays the “Open Source” license for the use of this package.  Please read it!  Once you have 

read it and clicked the button to continue, you will be notified that  an “Options” file was created.  The 

OPTIONS.FIL contains the default values for how your data will be stored and what the default missing value is for 

a variable (more on this later.)  Next, the following form should appear: 

 

Fig. 1.1  The LazStats Main Form 

The above form contains several important areas.  The “grid” is where data values are entered.  Each column 

represents a “variable” and each row represents an “observation” or case.  A default label is given for the first 

variable and each case of data you enter will have a case number.  At the top of this “main” form there is a series of 

“drop-down” menu items.  When you click on one of these, a series of options (and sometimes sub-options) that you 

can click to select are shown.  Before you begin to enter case values, you probably should “define” each variable to 

be entered in the data grid.  Select the “VARIABLES” menu item and click the “Define” option.  More will be said 

about this in the following pages. 
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Files 

 

 The “heart” of LazStats or any other statistics package is the data file to be created, saved, retrieved and analyzed.  

Unfortunately, there is no one “best” way to store data and each data analysis package has its own method for 

storing data.  Many packages do, however, provide options for importing and exporting files in a variety of formats.  

For example, with Microsoft’s Excel package, you can save a file as a file of “tab” separated fields.  Other program 

packages such as SPSS can import “tab” files.  Here are the types of file formats supported by LazStats: 

 

1.Text files (with the extension .LAZ)  NOTE: the file format in this text file is unique to LazStats!  

2.Tab separated field files (with the file extension of .TAB.) 

3.Comma separated field files (with the file extension of .CSV.) 

4.Space separated field files (with the file extension of .SSV.) 

 

 My preference is to save files as either a .TEX or .TAB file.  This gives me the opportunity to analyze the same 

data using a variety of packages.  For relatively small files (say, for example, a file with 20 variables and 1000 

cases), the speed of loading the different formats is similar and quite adequate.   

Creating a File 

 

 When LazStats begins, you will see a “grid” of two rows and two columns.  The left-most column will 

automatically contain the word “Case” followed by a number (1 for the first case.)  The top row will contain the 

default name of the first variable. You can change the name of the first variable and define additional variables by 

clicking on the menu item labeled “VARIABLES” and then clicking on the “Define” option.  A “form” will appear 

that looks like the Fig. below: 

 

Fig. 1.2  Variable Definitions Dialog 

 In the above Fig. you will notice that a variable name was automatically generated for the first variable.  To change 

the default name, click the box with the default Short Name and enter the variable name that you desire.  It is 

suggested that you keep the length of the name to eight characters or less.  You may also enter a long label for the 

variable.  If you save your file as a .LAZ file, this long name (as well as other descriptive information) will be saved 
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in the file (the use of the long label has not yet been implemented for printing output but will be in future versions.)  

To proceed, simply click the Return button in the lower right of this form.  The default type of variable is a “floating 

point” value, that is, a number which may contain a decimal fraction.  If a data field (grid cell) is left blank, the 

program will usually assume a missing value for the data.  The default format of a data value is eight positions with 

three positions allocated to fractional decimal values (format 8.3.)   By clicking on any of the specification fields 

you can modify these defaults to your own preferences.  You can change the number of decimal places (0 for 

integers.)   You will find that some analyses require that a variable be defined as an integer and others as floating 

point values.  The drop-down box labeled “Var. Types” lets you click on the type of variable you are defining and 

automatically record the integer value that defines that type.  If you press the “down-arrow” on your keyboard, 

another variable with default values will be added.  You can also insert or delete a new variable by clicking one of 

the buttons at the bottom of the form.  Another way to specify the default format and missing values is by modifying 

the "Options" file.  When you click on the Options menu the following form appears: 

 

 

Fig. 1.3   The Options Menu 

 

In the options form you can specify the Data Entry Defaults as well as whether you will be using American or 

European formatting of your data (American's use a period (.) and Europeans use a comma (,) to separate the integer 

portion of a number from its fractional part.)  To change the path to your data, double click your mouse button on 

the “Browse” button and then sub-directories of your choice.  Double click on that directory to obtain a list of the 

files in that directory.  In many countries, the separation of the whole number from the fractional part of a floating 

point number is a comma (,) and not a period (.) as in the United States.  A user that uses the comma separator is 

designated a “European” user.  The default is the American usage.  It is possible to convert one type to another.  The 

example files all use the American standard.  If you use the European standard, you will need to examine the 

“default” confidence intervals shown on many of the statistics dialog forms – they may have a period (e.g. 0.05) 

instead of a comma (0,05) as needed in the European format.  One can click on the value and change it to an 

appropriate format. 

 

Entering Data 

 

 When you enter data in the grid of the main form there are several ways to navigate from cell to cell.  You can, of 

course, simply click on the cell where you wish to enter data and type the data values.  If you press the “enter” key 

following the typing of a value, the program will automatically move you to the next cell to the right of the current 

one (assuming you have defined more than one variable.)  You may also press the keyboard “down” arrow to move 

to the cell below the current one.  If it is a new row for the grid, a new row will automatically be added and the 

“Case” label added to the first column.  You may use the arrow keys to navigate left, right, up and down.  You may 
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also press the “Page Up” button to move up a screen at a time, the “Home” button to move to the beginning of a 

row, etc.  Try the various keys to learn how they behave. You may click on the main form’s Edit menu and use the 

delete column or delete row options.  Be sure the cursor is sitting in a cell of the row or column you wish to delete 

when you use this method.   A common problem for the beginner is pressing the "enter" key when in the last column 

of their variables.  If you do accidentally add a case or variable you do not wish to have in your file, use the edit 

menu and delete the unused row or variable.  Notice that as you make grid entries and move to another cell, the 

previous value is automatically formatted according to the definition for that variable.  

Saving a File 

 

 Once you have entered a number of values in the grid, it is a good idea to save your work (power outages do 

occur!)  Go to the main form’s File menu and click it.  You will see there are several ways to save your data.  A 

“dialog box” will then appear as shown below for a .TEX type of file: 

 

Fig. 1.4   The Save Dialog Form 

Simply type the name of the file you wish to create in the File name box and click the Save button.  After this initial 

save operation, you may continue to enter data and save again.  Before you exit the program, be sure to save your 

file if you have made additions to it.  If you try to exit the program when a file is still in the grid, you will be asked if 

you want to save the file before exiting.  You can avoid this by closing the file before exiting the program.  If you 

have imported a .TAB file and are now saving it a a .LAZ file, be sure to type the extension .LAZ after the file 

name.  

 

 If you do not need to save specifications other than the short name of each variable, you may prefer to “export” the 

file in a format compatible to other programs.  The Export Tab File option under the File menu will save your data 

in a text file in which the cell values in each row are separated by a tab key character.  A file with the extension 

.TAB will be created.  The list of variables from the first row of the grid are saved first, then the first row of the data, 

etc. until all grid rows have been saved.  If there are blanks in any value cells, the default missing value will be 

written for that cell.  Alternatively, you may export your data with a comma or a space separating the cell values.  

Basic language programs frequently read files in which values are separated by commas or spaces.  If you are using 

the European format of fractional numbers, DO NOT USE the comma separated files format since commas will 

appear both for the fractions and the separation of values - clearly a design for disaster! 

 

The Main Form Menus 

Help 

 

 Users of Microsoft Windows are used to having a “help” system available to them for instant assistance when using 

a program.  Most of these systems provide the user the ability to press the “F1" key for assistance on a particular 

topic or by placing their cursor on a particular program item and pressing the right mouse button to get help.  
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LazStats for the Microsoft Windows does not use the MicroSoft help file system.  Instead, it uses your Internet 

browser to display a “Portable Data File” (.PDF) file.  Place the cursor on a menu topic and press the F1 key to see 

what happens!  You can use the help system to learn more about LazStats procedures.  Again, as the program is 

revised, there may not yet be help topics for all procedures and some help topics may differ from the actual 

procedure's operation. 

 

The Variables Menu 

 

 Across the top of the "Main Form" is a series of "menu" items.  Like the "File" menu, each of these menu items 

"drops-down" a series of options and these options may have sub-options.  The "Variables" menu contains a variety 

of options to assist you in working with the variables (columns of data) that you enter in the grid.  These options 

include: 

1. Define 

2. Print Definitions 

3. Recode a variable’s values 

4. Transform a variable 

5. Enter an Equation to Combine Variables to Create a New Variable 

 

The first option lets you enter or change a variable definition (see Fig. 2 above.) 

 

The fourth option lets you "transform" an existing variable to create a new variable.  A variety of transformations 

are possible.  If you elect this option, you will see the following dialogue form: 

 

 

Fig. 1.5   The Transformation Form 

 

You will note that you can transform a variable by adding, subtracting, multiplying, dividing or raising a value to a 

power.  To do this you select a variable to transform by clicking on the variable in the list of available variables and 

then clicking the right arrow.  You then enter a constant by clicking on the box for the constant and entering a value.  

You select the transformation with a constant from among the  transformations by clicking on the desired 

transformation (you will see it entered automatically in the lower right box.)  Next you enter a name for the new 

variable in the box labeled "Save new variable as:" and click the OK button. 

Sometimes you will want to transform a variable using one of the common exponentiation or trigonometric 

functions.  In this case you do not need to enter a constant - just select the variable, the desired transformation and 

enter the variable name before clicking the OK button. 

You can also select a transformation that involves two variables.  For example, you may want a new variable that 

represents the sum, product, difference, etc. of two variables.  In this case you select the two variables for the first 

and second arguments using the appropriate right-arrow key after clicking one and then the other in the available 

variables list. 
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The "Print Definitions" option simply creates a list of variable definitions on an "output" form which may be printed 

on your printer for future reference. 

 

The Enter An Equation option lets you create a new variable that combines existing variables with a variety of 

mathematical functions.  The form below shows the form that appears when you select this option: 

 

Fig. 1.6 The Equation Editor 

 

This form lets you create an equation for a new variable such as: 

NewVar = SQRT(Var1) * Log(Var3) – Var4 

Typically, you will first enter the name for a new variable and then enter function or simply a variable from the 

drop-down box and then click the Next Entry button.  The next entry will contain an operation, optionally a function 

and another variable from the Variables drop-down list.  Continue this “Next Entry” process for the number of 

variables in your equation.  When finished, click the “Compute” button to create the new variable values.  Click the 

Return button to go back to the main form. 

The Edit Menu 

 

 The Edit menu is provided primarily for deleting, cutting and pasting of cells, rows or columns of data.  It 

also provides the ability to insert a new column or row at a desired position in the data grid.  There is one special 

"paste" operation provided for users that also have the Microsoft Excel program and wish to copy cells from an 

Excel spreadsheet into the LazStats grid.  These operations involve clicking on a cell in a given row and column and 

the selecting the edit operation desired.  The user is encouraged to experiment with these operations in order to 

become familiar with them. 

The Tools Menu 

 

Fig. 1.7 The Tools Menu 

 An option under the Tools menu is to sort your data cases into ascending or descending sequence based on 

one of the selected variables.  Shown below is the dialog for sorting cases: 
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Fig. 1.8 The Sort Cases Menu 

Another option under the Tools menu lets you switch between the American and European format for decimal 

fractions.  This may be useful when you have imported a file from another country that uses the other format.  

LazStats will attempt to convert commas to periods or vice-versa as required. 

 

You can open the “Output” form that is used to display results from the different procedures.  The Output form is 

actually a minimal word processing procedure.  You can write and edit text, change fonts, change colors, etc. as in 

many word processors.  This will become advantageous as you will sometimes want to edit the output from a 

procedure to further enhance the results of an analysis prior to submission for publication. 

 

The "Select Cases" option lets you analyze only those cases (rows) which you select.  When you press this option 

you will see the following dialogue form: 

 

 

Fig. 1.9   The Select Cases Dialog Form 

 

Notice that you may select a random number of cases, cases that exhibit a specific range of values or cases if a 

specific condition exists.  Once selection has been made, a new variable is added to the grid called the "Filter" 

variable.  You can subsequently use this filter variable to delete unneeded cases from your file if desired.  Each of 

the selection procedures invokes a dialogue form that is specific to the type of selection chosen.  For example, if you 

select the "if condition is satisfied" button, you will see the following dialogue form: 
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Fig. 1.10   The Select IF Dialog Form 

 

An example has been entered on this form to demonstrate a typical selection criteria.  Notice that compound 

statements involve the use of opening and closing parentheses around each expression and the combined 

expressions.  You can directly enter values in the "if" box or use the buttons provided on the pad. 

 

Should you select the "random" option in Fig. (1.9) you would see the following form: 

 

Fig. 1.11   Selection of Cases at Random 

 

The user may select a percentage of cases or select a specific number from a specified number of cases. 

 

Finally, the user may select a specified range of cases.  This option produces the following dialogue form: 

 

 

Fig. 1.12   Selecting a Range of Cases  

 

 

The Variables menu “Recode” option is used to change the value of cases in a given variable.  For example, you 

may have imported a file that originally coded gender as "M" or "F" but the analysis you want requires a coding of 0 

and 1.  You can select the recode option and get the following form to complete: 
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Fig. 1.13   Re-coding Values of a Variable 

 

Notice that you must first click on the column of the variable to recode in the grid.  Once you select the recode 

option, enter the old value (or value range) and also enter the new value before clicking the Apply button.  You can 

repeat the process for multiple old values before returning to the Main Form. 

 

The Analyses Menu 

 

 The heart of any statistics package is the ability to perform a variety of statistical analyses.  Many of the 

typical analyses are included in the options and sub-options of the Analyses menu.  The Fig. below shows the 

options and the sub-options under the descriptive option.  No attempt will be made at this point in the text to 

describe each analysis - these are described further in the text. 

 

 

Fig. 1.14   The Analyses Menu, Descriptive Options 

 

The Simulation Menu 
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 As you read about and learn statistics, it is helpful to be able to simulate data for an analysis and see what 

the distribution of the values looks like.  In addition, the concepts of "type I error", "type II error", "Power", 

correlation, etc. may be more readily grasped if the student can "play" with distributions and the effects of choices 

they might make in a real study.  Under the simulation menu the user may generate a sequence of numbers, may 

generate multivariate data, may generate data that are a sample from a theoretical population or generate bivariate-

normal data for a correlation.  One can even generate data for a two-way analysis of variance!  The Fig. below 

illustrates the Simulation Menu. 

 

 

Fig. 1.15   The Simulation Menu 

 These simulation procedures are described later. 

 

Creating Research Reports 

 

Introduction 

 

 Once you begin using LazStats you may find it useful for creating research reports and articles.  We will 

assume that you are a Windows operating system user and that you have installed on your computer a word 

processing package such as the free Open Office program or the Microsoft Word program.  Once you begin creating 

your research document there are likely to be images from LazStats that you would like to include in that document.  

There are several ways to complete this task that we will cover in the following paragraphs.  We assume that you 

will have started both LazStats and your word processing program so that you can switch between them as needed. 

 

The Output Form 

 

 When you complete an analysis or simulation with LazStats, the printed output is placed on an “output 

form”.  This output can be saved to your disk with a name that you choose.  The output is saved as a “rich-text file”.  

This is a format that can be read by both of the previously mentioned software programs and those programs can 

“insert” another file into a currently opened file. 

 As an alternative, when the output form is shown by an LazStats procedure, you can drag your mouse over 

selected output while holding down the mouse button.  The selected output will be highlighted as you do this.  Copy 

the highlighted text to the Windows “Clipboard” by pressing the control key and the C key concurrently (Ctrl-C).  

Next, select the position in your document that you want to place the copied material by clicking on that position.  

Enter the Ctrl-V (concurrently press the control key and the V key) to copy the information on the Windows 

clipboard into your document. 
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Graphic Images 

 

 LazStats includes a variety of procedures that produce graphic pictures of data such as X versus Y plots, 

frequency distributions, power curves, etc..  Most of these graphic images can be saved to your disk and later 

included in your research document.  They are saved as bitmap images (.bmp) files by LazStats and can be inserted 

into your word processing document where desired. 

 One can also click on any image displayed on your screen and press the Alternate key and the print screen 

keys concurrently to capture that image.  You then use the paste function in your word processing program to 

transfer the saved image to your document.  These images can be re-sized in your document.  As a quick 

demonstration, I will click the alt-prtscr key combination on this current word document page and then paste in 

below using the ctrl-V key combination: 

 

 Fig. 1.16   Copying An Image Into A Document 

 

 

Some Common Errors! 

Empty Cells 

 

 The beginning user will often see a message something like “” is not a valid floating point value.  The most 

common cause of this error occurs when a procedure attempts to read a blank cell, that is, a cell that has been left 

empty by the user.  The new user will typically use the down-arrow to move to the next row in the data grid in 

preparation to enter the next row of values.  If you do this after entering the values for the last case, you will create a 

row of empty cells.  You should put the cursor on one of these empty cells and use the Edit->Delete Row menu to 

remove this blank row. 

 

 The user should define the “Missing Value” for each variable when they define the variable.  One should 

also click on the Options menu and place a missing value in that form.  LazStats attempts to place that missing value 

in empty cells when a file is saved as .LAZ file.  Not all LazStats procedures allow missing values so you may have 

to delete cases with missing values for those procedures. 
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Incorrect Format for Floating Point Values 

 

 A second reason you might receive a “not valid” error is because you are using the European standard for 

the format of values with decimal fractions.  Most of the statistical procedures contain a small “edit” window that 

contains a confidence level or a rejection area such as 95.0 or 0.05.  These will NOT be valid floating point values in 

the European standard and the user will need to click on the value and replace it with the correct form such as 95,0 

or 0,05.  This has been done for the user in some procedures but not all! 

 

String labels for Groups 

 

 Users of other statistics packages such as SPSS or Excel may have used strings of characters to identify 

different groups of cases (subjects or observations.)  LazStats uses sequential integer values only in statistical 

analyses such as analyses of variance or discriminant function analysis.  An edit procedure has been included that 

permits the conversion of string labels to integer values and saves those integers in a new column of the data grid.  

An attempt to use a string (alphanumeric) value will cause an “not valid” type of error.  Several procedures in 

LazStats have been modified to let you specify a string label for a group variable and automatically create an integer 

value for the analysis in a few procedures but not all.  It is best to do the conversion of string labels to integers and 

use the integer values as your group variable. 

 

Floating Point Errors 

 

 Sometimes a procedure will report an error of the type “Floating Point Division Error”.  This is often the 

outcome of a procedure attempting to divide a quantity by zero (0.)   As an example, assume you have entered data 

for several variables obtained on a group of subjects.  Also assume that the value observed for one of those variables 

is the same (a constant value) for all cases.  In this situation there is no variability among the cases and the variance 

and standard deviation will be zero!  Now an attempt to use that zero variance or standard deviation in the 

calculation of z scores, a correlation with another variable or other usage will cause an error (division by zero is not 

defined.) 

 

Values too Large (or small) 

 

 In some fields of study such as astronomy the values observed may be very, very large.  Computers use 

binary numbers to represent quantities.  Nearly all LazStats procedures use “double precision” storage for floating 

point values.  The double precision value is stored in 64 binary “bits” in the computer memory.  In most computers 

this is a combination of 8 binary “bytes” or words.  The values are stored with a characteristic and mantissa similar 

to a scientific notation.  Of course bits are also used to represent the sign of these parts.  The maximum value for the 

characteristic is typically something like 2 raised to the power of 55 and the mantissa is 2 to the 7th power.  Now 

consider a situation where you are summing the product of several of very large values such as is done in obtaining a 

variance or correlation.  You may very well exceed the 64 bit storage of this large sum of products!  This causes an 

“overflow” condition and a subsequent error message.  The same thing can be said of values too small.  This can 

cause an “underflow” error and associated error message. 

 

 The solution for these situations of values too large or too small is to “scale” your initial values.  This is 

typically done by dividing or multiplying the original values by a constant to move the decimal point to decrease (or 

increase) the value.  This does, of course, affect the “precision” of your original values but it may be a sacrifice 

necessary to do the analysis.  In addition, the results will have to be “re-scaled” to reflect the original measurement 

scale. 
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Chapter 2.   Basic Statistics 

Introduction 

 

 This chapter introduces the basic statistics concepts you will need throughout your use of the LazStats 

package.  You will be introduced to the symbols and formulas used to represent a number of concepts utilized in 

statistical inference, research design, measurement theory, multivariate analyses, etc.  Like many people first starting 

to learn statistics, you may be easily overwhelmed by the symbols and formulas - don't worry, that is pretty natural 

and does NOT mean you are retarded!  You may need to re-read sections several times however before a concept is 

grasped.  You will not be able to read statistics like a novel (don't we wish we could) but rather must "study" a few 

lines at a time and be sure of your understanding before you proceed. 

Symbols Used in Statistics 

 

 Greek symbols are used rather often in statistical literature.  (Is that why statistics is Greek to so many 

people?) They are used to represent both arithmetic types of operations as well as numbers, called parameters, that 

characterize a population or larger set of numbers.  The letters you usually use, called Arabic letters, are used for 

numbers that represent a sample of numbers obtained from the population of numbers. 

 

 Two operations that are particularly useful in the field of statistics that are represented by Greek symbols 

are the summation operator and the products operator.  These two operations are represented by the capital Greek 

letters Sigma Σ and Pi Π.  Whenever you see these symbols you must think: 

 

  Σ= "The sum of the values: " , or 

  Π = "The product of the values:" 

 

For example, if you see Y =  Σ (1,3,5,9) you would read this as "the sum of 1, 3, 5 and 9".  Similarly, if you see Y =  

Π(1,3,5,9) you would think "the product of 1 times 3 times 5 times 9". 

 

 Other conventions are sometimes adopted by statisticians.  For example, as in beginning algebra classes, 

we often use X to represent any one of many possible numbers.  Sometimes we use Y to represent a number that 

depends on one or more other numbers X1, X2, etc.  Notice that we used subscripts of 1, 2, etc. to represent different 

(unknown) numbers.  Lower case letters like y, x, etc. are also sometimes used to represent a deviation of a score 

from the mean of a set of scores.  Where it adds to the understanding, X, and x may be italicized or written in a 

script style. 

 

 Now lets see how these symbols might be used to express some values.  For example, we might represent 

the set of numbers (1,3,7,9,14,20) as X1, X2, X3, X4, X5, and X6.  To represent the sum of the six numbers in the 

set we could write: 

 





6

1

5420149731
i

iXY

     (2.1)

 

 

If we want to represent the sum of any arbitrary set of N numbers, we could write the above equation more 

generally, thus 

         (2.2) 

represents the sum of a set of N values.  Note that we read the above formula as "Y equals the sum of X subscript i 

values for the value of i ranging from 1 through N, the number of values". 

 What would be the result of the formula below if we used the same set of numbers (1,3,7,9,14,20) but each 

were multiplied by five ? 
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       (2.3) 

 

To answer the question we can expand the formula to 

 

       Y = 5X1 + 5X2 + 5X3 + 5X4 + 5X5 + 5X6 

           

         = 5(X1 + X2 + X3 + X4 + X5 + X6) 

           

         = 5(1 + 3 + 7 + 9 + 14 + 20) 

           

         = 5(54) = 270        (2.4) 

 

In other words, 

 

 
          (2.5) 

We may generalize multiplying any sum by a constant (C) to 

 

        (2.6) 

 

What happens when we sum a term which is a compound expression instead of a simple value?  For example, how 

would we interpret 

        (2.7) 

 

where C is a constant value? 

 

We can expand the above formula as 

 

Y  =  (X1 - C) + (X2 - C) + ... + (XN - C) 

          (2.8) 

 (Note the use of ... to denote continuation to the Nth term). 

 

The above expansion could also be written as 

 

Y = (X1 + X2 + ... + XN) - NC 

          (2.9) 

Or 



N

i

i NCXY
1         (2.10)

 

We note that the sum of an expression which is itself a sum or difference of multiple terms is the sum of the 

individual terms of that expression.  We may say that the summation operator distributes over the terms of the 

expression! 

 

 Now lets look at the sum of an expression which is squared.  For example, 

 

 



N

i

i CXY
1

2

        (2.11)
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When the expression summed is not in its most simple form, we must first evaluate the expression.  Thus 
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          (2.12)  

 

or  
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          (2.12) 

Probability Concepts 

 

 Maybe, possibly, could be, chances are, probably are all words or phrases we use to convey uncertainty 

about something.  Yet all of these express some belief that a thing or event could occur or exist.  The field of 

statistics is concerned about making such statements based on observations that will lead us to correct "guesses" 

about an event occuring or existing.  The field of study called "statistics" gets its name from the use of samples that 

we can observe to estimate characteristics about the population that we cannot observe.  If we can study the whole 

population of objects or events, there is no need for statistics!  Accounting methods will suffice to describe the 

population.  The characteristics (or indexes) we observe about a sample from a population are called statistics.  

These indexes are estimates of population characteristics called parameters.  It is the job of the statistician to 

provide indexes (statistics) about populations that give us some level of confidence that we have captured the true 

characteristics of the population of interest. 

 

 When we use the term probability we are talking about the proportion of objects in some population.  It 

might be the proportion of some discrete number of heads that we get when tossing a coin.  It might be the 

proportion of values within a specific range of values we find when we observe test scores of student achievement 

examinations.   

 

 In order for the statistician to make useful observations about a sample that will help us make confident 

statements about the population, it is often necessary to make assumptions about the distribution of scores in the 

population.  For example, in tossing a coin 30 times and examining the outcome as the number of heads or tails, the 

statistician would assume that the distribution of heads and tails after a very large number of tosses would follow the 

binomial distribution, a theoretical distribution of scores for a binary object.  If the population of interest is the 

relationship between beginning salaries and school achievement, the statistician may have to assume that the 

measures of salary and achievement have a normal distribution and that the relationship can be described by the 

bivariate-normal distribution. 

 

 A variety of indexes (statistics) have been developed to estimate characteristics (measurements) of a 

population.  There are statistics that describe the central tendency of the population such as the mean (average), 

median and mode.  Other statistics are used to describe how variable the scores are.  These statistics include the 

variance, standard deviation, range, semi-interquartile range, mean deviation, etc.  Still other indices are used to 

describe the relationship among population characteristics (measures) such as the product-moment correlation and 

the multiple regression coefficient of determination.  Some statistics are used to examine differences among samples 

from possibly different populations to see if they are more likely to be samples from the same population.  These 

statistics include the "t" and "z" statistic, the chi-squared statistic and the F-Ratio statistic. 

 

 The sections below will describe many of the statistics obtained on samples to make inferences about 

population parameters.  The assumed (theoretical) distribution of these statistics will also be described. 

 

Additive Rules of Probability 

 

 Formal aspects of probability theory are discussed in this section.  But first, we need to define some terms 

we will use.  First, we will define a sample space as simply a set of points.  A point can represent anything like 
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persons, numbers, balls, accidents, etc.  Next we define an event.  An event is an observation of something 

happening such as the appearance of "heads" when a coin is tossed or the observation that a person you selected at 

random from a telephone book is voting Democrat in the next election.  There may be several points in the sample 

space, each of which is an example of an event.  For example, the sample space may consist of 5 black balls and 4 

white balls in an urn.  This sample space would have 9 points.  An event might be "a ball is black."  This event has 5 

sample space points.  Another event might be "a ball is white."  This event has a sample space of 4 points.  We may 

now say that the probability of an event E is the ratio of the number of sample points that are examples of E to the 

total number of sample points provided all sample points are equally likely.  We will use the notation P(E) for the 

probability of an event.  Now let an event be "A ball is black" where the sample space is the set of 9 balls (5 black 

and 4 white.)  There are 5 sample points that are examples of this event out of a total of 9 sample points.  Thus the 

probability of the event P(E) = 5 / 9 .  Notice that the probability that a ball is white is 4/9.  We may also say that the 

probability that a ball is red is 0 / 9 or that the probability that the ball is both white and black is 0 / 9.  What is the 

probability that the ball is either white OR black?  Clearly this is (5 + 4) / 9 = 1.0. 

 

 In our previous example of urn balls, we noticed that a ball is either white or black.  These are mutually 

exclusive events.  We also noted that the sum of exclusive events is 1.0.  Now let us add 3 red balls to our urn.  We 

will label our events as B, W or R for the colors they represent.  Our sample space now has 12 points.  What is the 

probability that two balls selected are either B or W?  When the events are exclusive we may write this as P(B U A). 

Since these are exclusive events, we can write: P(B U W) = P(B) + P(W) = 5 / 12 + 4 / 12 = 9 / 12 = 3 / 4 = 0.75. 

 

 It is possible for a sample point to be an example of two or more events.  For example if we toss a "fair" 

coin three times, we can observe eight possible outcomes: 

 1.  HHH     2.  HHT     3.  HTH     4.  HTT     5.  TTT     6.  TTH     7.  THT  and  8.  THH 

 

If our coin is fair we can assume that each of these outcomes is equally likely, that is, has a probability of 1/8.  Now 

let us define two events: event A will be getting a "heads" on flip 1 and flip 2 of the coin and event B will be getting 

a "heads" on flips 1 and 3 of the coin.  Notice that outcomes 1 and 2 above are sample points of event A and that 

outcomes 1 and 3 are events of type B.  Now we can define a new event that combines events A and B.  We will use 

the symbol A ∩ B for this event.  If we assume each of the eight sample points are equally likely we may write P(A 

∩ B) = number of sample points that are examples of A ∩ B / total number of sample points, or 

P(A ∩ B) = 1 / 8.  Notice that only 1 of the points in our sample space has heads on both flips 1 and 2 and on 2 and 3 

(sample point 1.)  That is, the probability of event A and B is the probability that both events A and B occur. 

 

 When events may not be exclusive, we are dealing with the probability of an event A or Event B or both.  

We can then write  

P(A U B) = P(A) + P(B) - P(A ∩ B)     (2.13) 

Which, in words says, the probability of events A and B equals the probability of event A plus the probability of 

event B minus the probability of event A and B.  Of course, if A and B are mutually exclusive then the probabilty of 

A and B is zero and the probability of A or B is simply the sum of P(A) and P(B). 

 

The Law of Large Numbers 

 

 Assume again that you have an urn of 5 black balls and 4 white balls.  You stir the balls up and draw one 

from the urn and record its color.  You return the ball to the urn, again stir the balls vigourously and again draw a 

single ball and record its color.  Now assume you do this 10,000 times, each time recording the color of the ball.  

Finally, you count the number of white balls you drew from the 10,000 draws.  You might reasonably expect the 

proportion of white balls to be close to 4/9 although it is likely that it is not exactly 4/9.  Should you continue to 

repeat this experiment over and over, it is also reasonable to expect that eventually, the proportion would be 

extremely close to the actual proportion of 4/9.  You can see that the larger the number of observations, the more 

closely we would approximate the actual value.  You can also see that with very small replications, say 12 draws 

(with replacement) could lead to a very poor estimate of the actual proportion of white balls. 

 

Multiplication Rule of Probability 
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 Assume you toss a fair coin five times.  What is the probability that you get a "heads" on all five tosses?  

First, the probability of the event P(E) = 1/2 since the sample space has only two possible outcomes.  The 

multicative rule of probability states that the probability of five heads would be 1/2 * 1/2 * 1/2 * 1/2 * 1/2 or simply 

(1/2) to the fifth power (1/32) or, in general, P(E)
n
 where n is the number of events E. 

 

 As another example of this rule, assume a student is taking a test consisting of six multiple-choice items.  

Each item has 5 equally attractive choices.  Assume the student has absolutely no knowledge and therefore guesses 

the answer to each item by randomly selecting one of the five choices for each item.  What is the probability that the 

student would get all of the items correct?  Since each item has a probability of 1/5, the probability that all items are 

answered correctly is (1/5)
6 
or 0.000064 .  What would it be if the items were true-false items? 

 

Permutations and Combinations 

 

 A permutation is an arrangement of n objects.  For example, consider the letters A, B, C and D.  How many 

permutations (arrangements) can we make with these four letters?  We notice there are four possibilities for the first 

letter.  Once we have selected the first letter there are 3 possible choices for the second letter.  Once the second letter 

is chosen there are two possibilities for the third letter.  There is only one choice for the last letter.  The number of 

permutations possible then is 4 x 3 x 2 x 1 = 24 ways to arrange the four letters.  In general, if there are N objects, 

the number of permutations is N x (N-1) x (N-2) x  (N-3) x … (1).  We abbreviate this series of products with an 

exclamation point and write it simply as N!  We say "N factorial" for the product series.  Thus 4! = 24.  We do, 

however, have to let 0! = 1, that is, by definition the factorial of zero is equal to one.  Factorials can get very large.  

For example, 10! = 3,628,800 arrangements.  If you spent a minute examining one arrangement of 12 guests for a 

party, how long would it take you to examine each arrangement?  I'm afraid that if you worked 8 hours a day, five 

days a week for 52 weeks a year you (and your descendants) would still be working on it for more than a thousand 

years! 

 

 A combination is a set of objects without regard to order.  For example, the combination of A, B, C and D 

in any permutation is one combination.  A question arises however concerning how many combinations of K objects 

can be obtained from a set of N objects.  For example, how many combinations of 2 objects can be obtained from a 

set of 4 objects.  In our example, we have the possibilities of A + B, A + C, A + D,  B + C, B + D and C + D or a 

total of 6 combinations.  Notice that the combination AB is the same as BA because order is not considered.  A 

formula may be written using permutations that gives us a general formula for combinations.  It is 

 N! / [ K! (N-K)!]        (2.14)  

In our example then, the number of combinations of 2 things out of 4 is 4! / [2! (4-2)!] which might be written as 

 

 4 x 3 x 2 x 1             24 

 -------------------  = --------  = 6      (2.15) 

 (2 x 1) x (2 x 1)         4 

 

A special mathematics notation is often used for the combination of k things out of N things.  It is 

 

)!(!
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KNK

N

K

N











 

          (2.16) 

You will see the use of combinations in the section on the binomial distribution. 

Conditional Probability 

 

 In sections above we defined the additive law for mutually exclusive events as the sum of the invidual 

probabilities.  For example, for a fair die the probability of each of the faces is 1/6 so the probability of getting a 1 in 

two tosses (toss A and a toss B) is P(A) + P(B) = 1/6 + 1/6 = 1/3.  Our multiplicative law for independent events 

states that the probability of obtaining event A and event B is P(A) x P(B).  So the probability of getting a 1 on toss 

A of a die 1 and toss B of the die is P(1) x P(2) = 1/6 x 1/6 = 1/36.  But what if we don't know our die is a "fair" die 

with equal probabilties for each face on a toss?  Can we use the prior information from toss A of the die to say what 

the probability if for toss B?   
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 Conditional probability is the probability of an event given that another event has already occurred.  We 

would write 
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          (2.17) 

If A and B are independent then  
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          (2.18) 

or the probability of the second toss is 1/6, the same as before. 

 

Now consider two events A and B:  for B an individual has tossed a die four times with outcomes E1, E2, E3 and 

E4; For A the event is the tosses with outcomes E1 and E2.  The events might be the toss results of 1, 3, 5 and 6.  

Knowing that event A has occurred, what is the probabilty of event B, that is, P(A|B)?  Intuitively you might notice 

that the probabilty of the B event is the sum of the individual probabilities or 1/6 + 1/6 + 1/6 + 1/6 = 2/3, and that the 

probability of the A event is 1/6 +  1/6 = 1/3 or half the probability of B.  That is, P(A) / P(B) = 1/2.   

 

 A more formal statement of conditional probability is 
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        (2.19)

 

 

Thus the probability of event A is conditional on the prior probability of B.  The result P(A|B) is sometimes called 

the posterior probability.  Notice we can rewrite the above equation as: 

 

 )()()|( BAPBPBAP 
       {2.20)

 

 

and 
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       (2.21)

 

 

Since both equations equal the same thing we may write 
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       (2.22)

 

 

The above is known as Bayes Theorem for events. 

 

 Now consider an example.  In a recent poll in your city,  40 percent are registered Democrats and 60 

percent are registered Republicans.  Among the Democrats, the poll shows that 70% feel that invading Iraq was a 

mistake and 20% feel it was justified.  You have just met a new neighbor and have begun a conversation over a cup 

of coffee.  You learn that this neighbor feels that invading Iraq was a mistake.  What is the probability that the 

neighbor is also a Democrat?  Let A be the event that the neighbor is Democrat and B be the event that she feels the 

invasion was a mistake.  We already know that the probability of A is P(A) = 0.6.  We also know that the probability 

of B is P(B|A) = 0.7 .  We need to compute P(B), the probability the neighbor feels the invasion was a mistake.  We 

notice that the probability of B can be decomposed into two exclusive parts: P(B) = P(B and A) and P(B and not A) 

where the probability of not A is 1 - P(A) or 0.4, the probability of not being a democrat.  We can write 
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)|()()( ABPnotAPnotABP         (2.23) 

 

or P(B) = P(B and A) + P(not A)P(B|not A)      (2.24) 

 

or P(B) = P(B|A)P(A) + P(not A) P(B|not A)      (2.25) 

 

Now we know P(A) = 0.4, P( not A) = 1 - .4 = 0.6,  P(B|A) = 0.7 and P(B| not A) = 0.2.  Therefore, 

P(B) = (0.7) (0.4) + (0.6)(0.2) = 0.40 

 

Now knowing P(B) we can compute P(A|B) using Bayes' Theorem: 
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is the probability of the neighbor being Democrat. 

 

Probabilty as an Area 

 

 Probabilities are often represented as proportions of a circle or a polygon that shows the distribution of 

events in a sample space.  Venn diagrams are circles with a portion of the ellipse shaded to represent a probability of 

an event in the space of the circle.  In this case the circles area is considered to be 1.0.  Distributions for binomial 

events, normally distributed events, poisson distributed events, etc. will often show a shaded area to represent a 

probability.  You will see these shapes in sections to come. 

Sampling 

 

 In order to make reasonable inferences about a population from a sample, we must insure that we are 

observing sample data that is not, in some artificial way, going to lead us to wrong conclusions about the population.  

For example, if we sample a group of Freshman college students about their acceptance or rejection of abortion, and 

use this to estimate the beliefs about the population of adults in the United States, we would not be collecting an 

unbiased or fair sample.  We often use the term experiment to describe the process of drawing a sample.  A random 

experiment or random sample is considered a fair or un-biased  basis for estimating population parameters.  You can 

appreciate the fact that the number of experiments (samples) drawn is highly critical to make relevant inferences 

about the population.  For example, a series of four tosses of a coin and counting the number of heads that occur is a 

rather small number of samples from which to infer whether or not the coin is likely to yield 50% heads and 50% 

tails if you were to continue to toss the coin an infinite number of times!  We will have much more confidence about 

our sample statistics if we use a large number of experiments. 

 

 Two of the most common mistakes of beginning researchers is failing to use a random sample and to use 

too few samples (observations) in their research.  A third common mistake is to assume a theoretical model for the 

distribution of sample values that is incorrect for the population.   

The Mean 

 

 The mean is probably the most often used parameter or statistic used to describe the central tendency of a 

population or sample.  When we are discussing a population of scores, the mean of the population is denoted with 

the Greek letter μ .  When we are discussing the mean of a sample, we utilize the letter X with a bar above it.  The 

sample mean is obtained as 
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          (2.27) 

 The population mean for a finite population of values may be written in a similar form as 
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          (2.28)  

 When the population contains an infinite number of values which are continuous, that is, can be any real 

value, then the population mean is the sum of the X values times the proportion of those values.  The sum of values 

which can be an arbitrarily small in differences from one another is written using the integral symbol instead of the 

Greek sigma symbol.  We would write the mean of a set of scores that range in size from minus infinity to plus 

infinity as 

 

 dxXXp






        (2.29)

 

 

                  where p(X) is the proportion of any given X value in the population.  The tall curve which resembles a 

script S is a symbol used in calculus to mean the "sum of" just like the symbol  that we saw previously.  We use  

to represent "countable" values, that is values which are discrete.  The "integral" symbol on the other hand is used to 

represent the sum of values which can range continuously, that is, take on infinitely small differences from one-

another. 

 

 A similar formula can be written for the sample mean, that is, 
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where p(X) is the proportion of any given Xi value in the sample. 

 

 If a sample of n values is randomly selected from a population of values, the sample mean is said to be an 

unbiased estimate of the population mean.  This simply means that if you were to repeatedly draw random samples 

of size n from the population, the average of all sample means would be equal to the population mean.  Of course we 

rarely draw more than one or two samples from a population.  The sample mean we obtain therefore will typically 

not equal the population mean but will in fact differ from the population mean by some specific amount.  Since we 

usually don't know what the population mean is, we therefore don't know how far our sample mean is from the 

population mean.  If we have, in fact, used random sampling though, we do know something about the shape of the 

distribution of sample means; they tend to be normally distributed.  (See the discussion of the Normal Distribution in 

the section on Distributions).  In fact, we can estimate how far the sample mean will be from the population mean 

some (P) percent of the time.  The estimate of sampling errors of the mean will be further discussed in the section on 

testing hypotheses about the difference between sample means. 

 

 Now let us examine the calculation of a sample mean.  Assume you have randomly selected a set of 5 

scores from a very large population of scores and obtained the following: 

 

            X1  = 3 

  X2  = 7 

  X3  = 2 

  X4  = 8 

  X5  = 5 

 

The sample mean is simply the sum (  ) of the X scores divided by the number of the scores, that is 
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We might also note that the proportion of each value of X is the same, that is, one out of five.  The mean could also 

be obtained by 

 

 



n

i

ii XpXX
1         (2.32)

 

 

         =   3 (1/5) + 7 (1/5) + 2 (1/5) + 8 (1/5) + 5 (1/5) 

 

         = 5.0 

 

 The sample mean is used to indicate that value which is "most typical" of a set of scores, or which 

describes the center of the scores.  In fact, in physics, the mean is the center-of-gravity ( sometimes called the first 

moment of inertia) of a solid object and corresponds to the fulcrum, the point at where the object is balanced. 

 

 Unfortunately, when the population of scores from which we are sampling is not symmetrically distributed 

about the population mean, the arithmetic average is often not very descriptive of the "central" score or most 

representative score.  For example, the population of working adults earn an annual salary of $21,000.00.  These 

salaries however are not symmetrically distributed.  Most people earn a rather modest income while there are a few 

who earn millions.  The mean of such salaries would therefore not be very descriptive of the typical wage earner.  

The mean value would be much higher than most people earn.  A better index of the "typical" wage earner would 

probably be the median, the value which corresponds to the salary earned by 50 percent or fewer people. 

  

 Examine the two sets of scores below.  Notice that the first 9 values are the same in both sets but that the 

tenth scores are quite different.  Obtain the mean of each set and compare them.  Also examine the score below 

which 50 percent of the remaining scores fall.  Notice that it is the same in both sets and better represents the 

"typical" score. 

 

 SET A: ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ) 

 

   Mean    =  ? 

   Median  = ? 

 

 SET B: ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 1000 ) 

 

               Mean    = ? 

               Median  = ? 

 

Variance and Standard Deviation 

 

 A set of scores are seldom all exactly the same if they represent measures of some attribute that varies from 

person to person or object to object.  Some sets of scores are much more variable that others.  If the attribute 

measures are very similar for the group of subjects, then they are less variable than for another group in which the 

subjects vary a great deal.  For example, suppose we measured the reading ability of a sample of 20 students in the 

third grade.  Their scores would probably be much less variable than if we drew a sample of 20 subjects from across 

the grades 1 through 12! 

 

 There are several ways to describe the variability of a set of scores.  A very simple method is to  subtract 

the smallest score from the largest score.  This is called the exclusive range.  If we think the values obtained from 

our measurement process are really point estimates of a continuous variable, we may add 1 to the exclusive range 

and obtain the inclusive range.  This range includes the range of possible values.  Consider the set of scores below: 
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  5, 6, 6, 7, 7, 7, 8, 8, 9 

 

If the values represent discrete scores (not simply the closest value that the precision of our instrument gives) then 

we would use the exclusive range and report that the range is (9 - 5) = 4.  If, on the other hand, we felt that the 

scores are really point estimates in the middle of intervals of width 1.0 (for example the score 7 is actually an 

observation someplace between 6.5 and 7.5) then we would report the range as (9-5) + 1 = 5 or (9.5 - 4.5) = 5. 

 

 While the range is useful in describing roughly how the scores vary, it does not tell us much about how 

MOST of the scores vary around, say, the mean.  If we are interested in how much the  scores in our set of data tend 

to differ from the mean score, we could simply average the distance that each score is from the mean.  The mean 

deviation, unfortunately is always 0.0!  To see why, consider the above set of scores again: 

 

 Mean = (5+6+6+7+7+7+8+8+9) / 9 = 63 / 9 = 7.0 

 

Now the deviation of each score from the mean is obtained by subtracting the mean from each score: 

 

   5 - 7 = -2 

   6 - 7 = -1 

   6 - 7 = -1 

   7 - 7 =  0 

   7 - 7 =  0 

   7 - 7 =  0 

   8 - 7 = +1 

   8 - 7 = +1 

   9 - 7 = +2 

                                            ____ 

 

   Total = 0.0 

 

 Since the sum of deviations around the mean always totals zero, then the obvious thing to do is either take 

the average of the absolute value of the deviations OR take the average of the squared deviations.  We usually 

average the squared deviations from the mean because this index has some very important application in other areas 

of statistics. 

 

 The average of squared deviations about the mean is called the variance of the scores.  For example, the 

variance, which we will denote as S
2
, of the above set of scores would be: 
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approximately. 

          (2.33) 

 

Thus we can describe the score variability of the above scores by saying that the average squared deviation from the 

mean is about 1.3 score points. 

 

 We may also convert the average squared value to the scale of our original measurements by simply taking 

the square root of the variance, e.g. S =√ (1.3) = 1.1547 (approximately).  This index of variability is called the 

standard deviation of the scores.  It is probably the most commonly used index to describe score variability! 

Estimating Population Parameters : Mean and Standard Deviation 

 

 We have already seen that the mean of a sample of scores randomly drawn from a population of scores is 

an estimate of the population's mean.  What we have to do is to imagine that we repeatedly draw samples of size n 

from our population (always placing the previous sample back into the population) and calculate a sample mean 

each time.  The average of all (infinite number) of these sample means is the population mean.  In algebraic symbols 

we would write: 
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                                      _        (2.34) 

Notice that we have let X represent the sample mean and  represent the population mean.  We say that the sample 

mean is an unbiased estimate of the population mean because the average of the sample statistic calculated in the 

same way that we would calculate the population mean leads to the population mean.  We calculate the sample mean 

by dividing the sum of the scores by the number of scores.  If we have a finite population, we could calculate the 

population mean in exactly the same way. 

 

 The sample variance calculated as the average of squared deviations about the sample mean is, however, a 

biased estimator of the population variance (and therefore the standard deviation also a biased estimate of the 

population standard deviation).  In other words, if we calculate the average of a very large (infinite) number of 

sample variances this average will NOT equal the population variance.  If, however, we multiply each sample 

variance by the constant  n / (n-1) then the average of these "corrected" sample variances will, in fact, equal the 

population variance!  Notice that if n, our sample size, is large, then the bias n / (n-1) is quite small.  For example a 

sample size of 100 gives a correction factor of about 1.010101.  The bias is therefore approximately 1 hundredth of 

the population variance.  The reason that the average of squared deviations about the sample means is a biased 

estimate of the population variance is because we have a slightly different mean (the sample mean) in each sample. 

 

 If we had knowledge of the population mean μ and always subtracted μ from our sample values X, we 

would not have a biased statistic.  Sometimes statisticians find it more convenient to use the biased estimate of the 

population variance than the unbiased estimate.  To make sure we know which one is being used, we will use 

different symbols for the biased and unbiased estimates.  The biased estimate will be represented here by a S
2
 and 

the unbiased by a s
2
 . The reason for use of the square symbol is because the square root of the variance is the 

standard deviation.  In other words we use S for the biased standard deviation and s for the unbiased standard 

deviation.  The Greek symbol sigma σ  is used to represent the population standard deviation and σ
2
 represents the 

population variance.  With these definitions in mind then, we can write: 
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          (2.35) 

or 
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          (2.36) 

where n is the sample size, k the number of samples, S2  is the biased sample variance and s
2
 is the unbiased sample 

variance. 

 

You may have already observed that multiplying the biased sample variance by n / (n-1) gives a more direct way to 

calculate the unbiased variance, that is: 

 

     s2  = (n / (n-1)) * S2     or 
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          (2.37) 
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In other words, we may directly calculate the unbiased estimate of population variance by dividing the sum of 

square deviations about the mean by the sample size minus 1 instead of just the sample size. 

 

 The numerator term of the variance is usually just called the "sum of squares" as sort of an abbreviation for 

the sum of squared deviations about the mean.  When you study the Analysis of Variance, you will see a much more 

extensive use of the sum of squares.  In fact, it is even further abbreviated to SS .  The unbiased variance may 

therefore be written simply as 
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The Standard Error of the Mean 

 

 In the previous discussion of unbiased estimators of population parameters, we discussed repeatedly 

drawing samples of size n from a population with replacement of the scores after drawing each sample.  We noted 

that the sample mean would likely vary from sample to sample due simply to the variability of the scores randomly 

selected in each sample.  The question may therefore be asked "How variable ARE the sample means?".  Since we 

have already seen that the variance  (and standard deviation) are useful indexes of score variability, why not use the 

same method for describing variability of sample means?  In this case, of course, we are asking how much do the 

sample means tend to vary, on the average, around the population mean.  To find our answer we could draw, say, 

several hundred samples of a given size and calculate the average of the sample means to estimate   Since we have 

already seen that the variance (and standard deviation) are useful indexes of score variability, why not use the same 

method for describing variability of sample means?  In this case, of course, we are asking how much do the sample 

means tend to vary, on the average, around the population mean.  To find our answer we could draw, say, several 

hundred samples of a given size and calculate the average of the sample means to estimate  and then get the 

squared difference of each sample mean from this estimate.  The average of these squared deviations would give us 

an approximate answer.  Of course, because we did not draw ALL possible samples, we would still potentially have 

some error in our estimate.  Statisticians have provided mathematical proofs of a more simple, and unbiased, 

estimate of how much the sample mean is expected to vary.  To estimate the variance of sample means we simply 

draw ONE sample, calculate the unbiased estimate of X score variability in the population then divide that by the 

sample size!  In symbols 
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          (2.38) 

The square root of this estimate of variance of sample means is the estimate of the standard deviation of sample 

means.  We usually refer to this as the standard error of the mean.  The standard error of the mean represents an 

estimate of how much the means obtained from samples of size n will tend to vary from sample to sample.  As an 

example, let us assume we have drawn a sample of 7 scores from a population of scores and obtained : 

 

  1, 3, 4, 6, 6, 2, 5 

 

First, we obtain the sample mean and variance as : 

 

 

857.3
7

7

1 

i

iX

X  (approximately)      (2.39) 

 

 
81.3

6

127

17

27

12 






i

i XX

s
      (2.40)
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Then the variance of sample means is simply 

 

544.0
7

81.3
2

2 
n

s
s X

X
       (2.41)

 

 

and the standard error of the mean is estimated as 

 

                           

74.02 
XX

ss
        (2.42)

 

 

 You may have noticed by now, that as long as we are estimating population parameters with sample 

statistics like the sample mean and sample standard deviation, that it is theoretically possible to obtain estimates of 

the variability of ANY sample statistic.  In principle this is true, however, there are relatively few that have 

immediate practical use.  We will only be using the expected variability of a few sample statistics.  As we introduce 

them, we will tell you what the estimate is of the variance or standard deviation of the statistic.  The standard error 

of the mean, which we just examined, will be used in the z and t-test statistic for testing hypotheses about single 

means.  More on that later.. 

 

Descriptive Statistics With LazStats 

 

 This section demonstrates the use of LazStats to obtain descriptive statistics for data that you have entered 

in a file on the main form’s grid.  In many cases, a graphical picture of one’s data is highly useful in understanding 

the distribution of the values for one or more variables.  In some procedures, the data of one or more variables must 

be defined as an integer.  In other procedures, the data should be defined as a floating point variable.  Be sure to 

define your variables as needed for each procedure. 

 

Central Tendency and Variability 

 

 Click on the Analyses menu and place your mouse on the Descriptive option.  The sub-option for 

Distribution Statistics is then chosen by clicking that option.  To demonstrate, we will use the file labeled 

cansas.LAZ and obtain the descriptive statistics for the variable “Weight”. 

 

 

Fig. 2.1   The Dialog for Central Tendency and Variability 
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When you click the Continue button on the above form you will see the output displayed on the “Output Form”.  

Notice that there are several options that may have been selected.  The CaseWise Deletion option lets you obtain the 

results for only those cases in which there are no missing values.  The z Scores to Grid option lets you create new 

variables that are the standardized z scores (mean of 0 and standard deviation of 1.0) for the variables you selected 

to analyze.  Shown below is the result of our analysis: 

 
DISTRIBUTION PARAMETER ESTIMATES 

 

weight (N = 20)  Sum =       3572.000 

Mean =    178.600  Variance =    609.621  Std.Dev. =     24.691 

Std.Error of Mean =      5.521 

95.00 percent Confidence Interval for the mean =  167.083 to  190.117 

Range =    109.000  Minimum =    138.000  Maximum =    247.000 

Skewness =      0.970  Std. Error of Skew =      0.512 

Kurtosis =      1.802  Std. Error Kurtosis =      0.992 

 

PERCENTILE RANKS 

Score Value   Frequency   Cum.Freq. Percentile Rank 

___________   __________  __________ ______________ 

   138.000          1          1        2.50 

   154.000          2          3       10.00 

   156.000          1          4       17.50 

   157.000          1          5       22.50 

   162.000          1          6       27.50 

   166.000          1          7       32.50 

   167.000          1          8       37.50 

   169.000          1          9       42.50 

   176.000          2         11       50.00 

   182.000          1         12       57.50 

   189.000          2         14       65.00 

   191.000          1         15       72.50 

   193.000          2         17       80.00 

   202.000          1         18       87.50 

   211.000          1         19       92.50 

   247.000          1         20       97.50 

 

First Quartile =  158.250 

Median =  176.000 

Third Quartile =  192.500 

Interquartile range =   34.250 

 

Alternative Methods for Obtaining Quartiles 

    Method 1    2       3       4       5       6       7       8 

Pcntile 

Q1    157.000 158.250 157.000 159.500 160.750 157.000 160.750 157.000 

Q2    176.000 176.000 176.000 176.000 176.000 176.000 176.000 176.000 

Q3    191.000 192.500 191.000 192.000 191.500 191.000 191.500 193.000 

NOTES: 

Method 1 is the weighted average at X[np] where n is no. of cases, p is 

percentile / 100 

Method 2 is the weighted average at X[(n+1)p] This is used in this program. 

Method 3 is the empirical distribution function. 

Method 4 is called the empirical distribution function - averaging. 

Method 5 is called the empirical distribution function = Interpolation. 

Method 6 is the closest observation method. 

Method 7 is from the TrueBasic Statistics Graphics Toolkit. 

Method 8 was used in an older Microsoft Excel version. 

See the internet site http://www.xycoon.com/ for the above. 

======================================================== 

http://www.xycoon.com/
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Frequencies 

 

 Another way to examine data is to obtain the frequency of cases that fall within categories determined by a 

range of score values.  To do this, click on the Frequencies option under the Descriptive menu.  You will see the 

form shown below: 

 

Fig. 2.2   The Frequencies Dialog 

Notice that we have selected the variable “Weight” from the cansas.LAZ file.  We have also elected to obtain a three 

dimensional, vertical bar chart of the obtained frequencies and to plot the normal distribution for corresponding 

frequencies behind the bar chart.  Also elected was to create a new variable in the grid that contains an integer value 

of the frequency group.  This could be useful for other graphical plots like the box plot procedure.  When we click 

the OK button above, we first are presented with a dialog box that asks us to define the interval size and the number 

of intervals.  One must enter an interval size that produces a number of intervals equal to or less than the number of 

cases.  You simply click on that box and enter the new value.  When you press the return key after entering a new 

value, you will see a change in the number of intervals.  You can repeat that process until the number of intervals is 

acceptable.  If you attempt to create more intervals than the number of cases, you will receive a warning and be 

returned to this dialog: 

 

Fig. 2.3   Specifying the Interval Size and Number of Intervals for the Frequency Analysis 
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Notice we have changed the interval size to 10 which resulted in the number of intervals that is less than the number 

of cases.  Clicking the OK button results in the following: 

 
FREQUENCY ANALYSIS BY BILL MILLER 

 

Frequency Analysis for weight 

    FROM    TO      FREQ.   PCNT    CUM.FREQ. CUM.PCNT. %ILE RANK 

 

  138.00  148.00       1    0.05      1.00      0.05      0.03 

  148.00  158.00       4    0.20      5.00      0.25      0.15 

  158.00  168.00       3    0.15      8.00      0.40      0.33 

  168.00  178.00       3    0.15     11.00      0.55      0.47 

  178.00  188.00       1    0.05     12.00      0.60      0.57 

  188.00  198.00       5    0.25     17.00      0.85      0.72 

  198.00  208.00       1    0.05     18.00      0.90      0.88 

  208.00  218.00       1    0.05     19.00      0.95      0.93 

  218.00  228.00       0    0.00     19.00      0.95      0.95 

  228.00  238.00       0    0.00     19.00      0.95      0.95 

  238.00  248.00       1    0.05     20.00      1.00      0.97 

 

Interval ND Freq. 

     1        1.16 

     2        1.90 

     3        2.63 

     4        3.12 

     5        3.14 

     6        2.70 

     7        1.97 

     8        1.23 

     9        0.65 

    10        0.30 

    11        0.11 

    12        0.04 

 

 

Fig. 2.4  A Plot of Frequencies in the Cansas.LAZ File 

 

Notice that the bars in the front of the plot represent the frequency of scores in the intervals of our data while the 

bars behind represent frequencies expected in the normal distribution.   
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Cross-Tabulation 

 When you have entered data that represents cases classified by two or more categorical variables, it is 

useful to count the number of cases classified in those categories.  The Cross Tabulation option of the Descriptives 

option gives you those results.  We will use a file labeled “twoway.LAZ” to demonstrate.  We have loaded the file 

into the grid and elected the cross tabulation option.  Below are the results: 

 

 

Fig. 2.5  Specification of a Cross-Tabulation 

CROSSTAB RESULTS 

 

       Analyzed data is from file : C:\lazarus\Projects\LazStats\LazStatsData\twoway.LAZ 

 

Row  min.=  1, max.=  2, no. levels =   2 

Col min.=  1, max.=  2, no. levels =   2 

 

FREQUENCIES BY LEVEL: 

For cell levels: Row :  1  Col:  1   Frequency =   3 

For cell levels: Row :  1  Col:  2   Frequency =   3 

Sum across levels =   6 

 

 

For cell levels: Row :  2  Col:  1   Frequency =   3 

For cell levels: Row :  2  Col:  2   Frequency =   3 

Sum across levels =   6 

 

Cell Frequencies by Levels with   12 cases. 

Variables 

                Col:  1      Col:  2 

   Block 1       3.000        3.000  

   Block 2       3.000        3.000  

 

Grand sum across all categories =  32 

 

Breakdown 

 A procedure related to the Cross-Tabulation procedure described above lets you analyze a continuous 

(floating point) variable broken down into categories of one or more categorical variables.  Using the same file as 

above (twoway.LAZ) we will demonstrate this procedure.  Below is the form and the results. 

 

 



Statistics and Measurement Concepts for LazStats   William G. Miller ©2012 

 

 41 

 

Fig. 2.6  The Breakdown Form 

BREAKDOWN ANALYSIS PROGRAM 

 

VARIABLE SEQUENCE FOR THE BREAKDOWN: 

Row        (Variable   1) Lowest level =  1 Highest level =  2 

Col        (Variable   2) Lowest level =  1 Highest level =  2 

 

Variable levels:  

Row        level =   1 

Col        level =   1 

 

Freq.     Mean     Std. Dev. 

  3        3.000    1.000  

Variable levels:  

Row        level =   1 

Col        level =   2 

 

Freq.     Mean     Std. Dev. 

  3        6.000    1.000  

Number of observations accross levels =   6 

Mean accross levels =    4.500 

Std. Dev. accross levels =    1.871 

 

Variable levels:  

Row        level =   2 

Col        level =   1 

 

Freq.     Mean     Std. Dev. 

  3       10.000    2.646  

Variable levels:  

Row        level =   2 

Col        level =   2 

 

Freq.     Mean     Std. Dev. 

  3       12.000    2.646  

Number of observations accross levels =   6 

Mean accross levels =   11.000 

Std. Dev. accross levels =    2.608 

 

Grand number of observations accross all categories =  12 

Overall Mean =    7.750 

Overall standard deviation =    4.025 

 

ANALYSES OF VARIANCE SUMMARY TABLES 

 

Variable levels:  
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Row        level =   1 

Col        level =   1 

 

Variable levels:  

Row        level =   1 

Col        level =   2 

 

SOURCE    D.F.        SS        MS        F       Prob.>F 

GROUPS     1           13.50     13.50    13.500  0.0213 

WITHIN     4            4.00      1.00 

TOTAL      5           17.50 

 

Variable levels:  

Row        level =   2 

Col        level =   1 

 

Variable levels:  

Row        level =   2 

Col        level =   2 

 

SOURCE    D.F.        SS        MS        F       Prob.>F 

GROUPS     1            6.00      6.00     0.857  0.4069 

WITHIN     4           28.00      7.00 

TOTAL      5           34.00 

 

ANOVA FOR ALL CELLS 

 

SOURCE    D.F.        SS        MS        F       Prob.>F 

GROUPS     3          146.25     48.75    12.188  0.0024 

WITHIN     8           32.00      4.00 

TOTAL     11          178.25 

FINISHED 

Normality Tests 

 

 One can test the assumption that the distribution of values in a variable are a random sample from a 

normally distributed population.  The dialog form is shown below: 

 

Fig. 2.7  Normality Test Dialog 
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In this example we have utilized the cansas.LAZ file and analyzed the weight variable.  The two tests both support 

the assumption that weight is obtained from a normally distributed population. 

X Versus Y Plot 

 

 One of the best way to examine the relationship between two variables is to plot the values of one against 

the other.  We have selected the cansas.LAZ file and have plotted two of the variables.  Shown below is the dialog 

form for this procedure.  You can see the variables that have been selected and the options for the output that have 

been selected. 

 

 

Fig. 2.8  X Versus Y Dialog 

The output obtained when you click the OK button is shown below: 

 
X versus Y Plot 

 

X = chins, Y = jumps from file: 

C:\lazarus\Projects\LazStats\LazStatsData\cansas.LAZ 

 

Variable     Mean   Variance  Std.Dev. 

chins         9.45     27.94      5.29 

jumps        70.30   2629.38     51.28 

Correlation = 0.4958, Slope =     4.81, Intercept =    24.86 

Standard Error of Estimate =    45.75 

Number of good cases = 20 
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Fig. 2.9  A Plot of Two Variables 

The results indicate a moderate correlation of 0.496 with considerable scatter of points.  In particular, notice the 

“outlier” at the Y value of 17 and the jumps of 250.  Elimination of that point might change the correlation quite a 

bit.  We also notice that the pattern of points does not seem to form a symmetric oval that is expected for a bivariate-

normal distribution.  Notice the values below the means form a somewhat flat distribution while those above the 

mean for chins is more rounded.  One could speculate that there might be a curvilinear relationship between these 

two variables.  The two red curves on the border of the plots indicate the 95% confidence limits.  Notice the point 

we mentioned lies quit a bit outside this interval.  
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Group Frequency Histograms 

 

 When data values have been classified as members of various groups, one can obtain a plot of the 

frequency of cases in each group.  The frequency variable should be defined as an integer variable, typically with 

values from 1 to the highest group number.  We have selected the file chisqr.LAZ as an example in which cases 

have been classified into both rows and columns.  In our example we have chosen to plot the frequency of cases in 

the various columns and have chose the three dimensional vertical plot. 

 

 

Fig. 2.10  Specification Dialog for a Frequency Analysis 

 

The plot obtained is: 

 

 

Fig. 2.11  A Sample Group Frequency Plot 
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Repeated Measures Bubble Plot 

 

 Teachers, physicians, economists and other professionals often collect the same measure repeatedly over 

time for various classes of subjects.  One of the ways to examine trends in this data is to plot these repeated values 

with bubbles that are colored for the groups.  In our example we are going to use some school data that shows 

achievement of students as a function of both the year the data were collected and the ratio of teachers to students.  

Our specifications are shown in the following dialog: 

 

Fig. 2.12  Repeated Measures Bubble Plot Dialog 

When the Compute button is clicked, the following plot is obtained: 
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Fig. 2.13  Bubble Plot of School Achievement 

 

Notice in this plot that as the number of students to teacher ratio increases, the acievement goes down (group 7 as an 

example.)  Also notice the increase in achievement as the ratio decreases as demonstrated by group 8.  One would 

most likely want to obtain the correlation between the ratio and achievement across all the years!  Additional output 

obtained is: 

 
MEANS FOR Y AND SIZE VARIABLES 

 

Grand Mean for Y =   18.925 

Grand Mean for Size =   23.125 

 

REPLICATION MEAN Y VALUES (ACROSS OBJECTS) 

Replication     1 Mean =   17.125 

Replication     2 Mean =   18.875 

Replication     3 Mean =   18.875 

Replication     4 Mean =   19.250 

Replication     5 Mean =   20.500 

 

REPLICATION MEAN SIZE VALUES (ACROSS OBJECTS} 

Replication     1 Mean =   25.500 

Replication     2 Mean =   23.500 

Replication     3 Mean =   22.750 

Replication     4 Mean =   22.500 

Replication     5 Mean =   21.375 

 

MEAN Y VALUES FOR EACH BUBBLE (OBJECT) 

Object     1 Mean =   22.400 

Object     2 Mean =   17.200 

Object     3 Mean =   19.800 

Object     4 Mean =   17.200 

Object     5 Mean =   22.400 

Object     6 Mean =   15.800 

Object     7 Mean =   20.000 

Object     8 Mean =   16.600 

 

MEAN SIZE VALUES FOR EACH BUBBLE (OBJECT) 
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Object     1 Mean =   19.400 

Object     2 Mean =   25.200 

Object     3 Mean =   23.000 

Object     4 Mean =   24.600 

Object     5 Mean =   19.400 

Object     6 Mean =   25.800 

Object     7 Mean =   23.200 

Object     8 Mean =   24.400 

 

We have plotted the ratio of student to teachers against achievement and obtained the following: 

 

Fig. 2.14  Plot of  Teacher-Student Ratio to Achievement 

The above plot verifies our bubble plot which suggested a high degree of relationship between these two variables.  

In effect, the bubble plot is a way of viewing three dimensions of your data.  In the above example we viewed the 

relationship among achievement (the Y axis), year (the X axis), and student to teacher ratio (the bubble size) for a 

number of schools (the bubbles.)   You may also want to consider the three dimensional plot procedure which lets 

you rotate your data around the X, Y or Z axis.   

Comparisons With Theoretical Distributions 

 

 LazStats lets you view the distribution of your data against a theoretical distribution in several  ways.  This 

procedure lets you plot the cumulative distribution of your data values and show the theoretical cumulative 

distribution of a theoretical curve.  In addition, you can also plot the frequency distribution of your values against 

the theoretical frequency distribution.  A variety of theoretical distributions are available for comparison.  We will 

demonstrate the use of this procedure to plot the same data used previously, that is, the weight variable from the 

cansas.LAZ file.  Show below is the dialog form: 
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Fig. 2.15  Comparison of Cumulative Distributions 

 

The results are: 

 

 

Fig. 2.16  Cumulative Normal vs. Cumulative Observed Values 

Notice that the observed data seem to follow the cumulative distribution of the normal curve fairly well.   

 

The printout for the above analysis is: 

 
Distribution comparison by Bill Miller 

    weight       weight       weight       Normal       Normal       Normal 

  X1 Value    Frequency   Cum. Freq.     X2 Value    Frequency   Cum. Freq. 

   138.000            1        1.000       -3.000            0        0.000 

   144.000            0        1.000       -2.667            0        0.000 

   150.000            2        3.000       -2.333            0        0.000 

   156.000            2        5.000       -2.000            1        1.000 

   162.000            3        8.000       -1.667            1        2.000 

   168.000            1        9.000       -1.333            1        3.000 

   174.000            2       11.000       -1.000            2        5.000 

   180.000            1       12.000       -0.667            2        7.000 

   186.000            3       15.000       -0.333            3       10.000 

   192.000            2       17.000       -0.000            3       13.000 

   198.000            1       18.000        0.333            2       15.000 

   204.000            0       18.000        0.667            2       17.000 

   210.000            1       19.000        1.000            1       18.000 

   216.000            0       19.000        1.333            1       19.000 

   222.000            0       19.000        1.667            1       20.000 
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   228.000            0       19.000        2.000            0       20.000 

   234.000            0       19.000        2.333            0       20.000 

   240.000            0       19.000        2.667            0       20.000 

 Kolmogorov Probability = 0.765763173908239, Max Dist = 0.2222222222222222 

 
Three Dimensional Rotation 
 

 One gains an appreciation for the relationship among two or three variables if one can view a plot of points 

for three variables in a 3 dimension space.  It helps even more if one can rotate those points about each of the three 

axis.  To demonstrate we have elected three variables from the cansas.LAZ file.  Show below is the dialog and plot: 

 

 

Fig. 2.17  Scatter Plot of Values for Three Variables 

You can place the mouse on one of the three “scroll” bar buttons (squares in the slider portion) and drag the button 

down while holding down the left mouse button.  This will let you see more clearly the relationships among the 

three variables.  To demonstrate, we have rotated the Y axis to 45 and the Z axis to nearly 0 degrees to examine the 

relationship among the variables (weight, waist and chins.) 

 

 

Fig. 2.18  Rotated Variables to Examine Relationship Between Two Variables 
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Essentially, you can rotate the points around any one of the three axis until one of the axis is hidden.  This lets you 

see the points projected for just two of the variables at a time. 

Box Plots 

 

 Box plots are a way of visually inspecting the distribution of scores within various categories.  As an 

example, we will use a file labeled anova2.LAZ which contains data for an analysis of covariance with row, column, 

slice, X, covar1 and covar2 variables.  We have selected to do a box plot of the X variable (the dependent variable) 

for the three slice categories.  Shown below is the dialog box for our analysis. 

 

 

Fig. 2.19  Box Plot Dialog 

Since we have elected the option of showing the frequencies within each category, we first obtain the following 

output: 
Box Plot of Groups 

 

 

Results for group 1, mean =    3.500 

Centile       Value 

Ten           1.100 

Twenty five   2.000 

Median        3.500 

Seventy five  5.000 

Ninety        5.900 

Score Range    Frequency Cum.Freq. Percentile Rank 

______________ _________ _________ _______________ 

  0.50 -   1.50   2.00      2.00       8.33 

  1.50 -   2.50   2.00      4.00      25.00 

  2.50 -   3.50   2.00      6.00      41.67 

  3.50 -   4.50   2.00      8.00      58.33 

  4.50 -   5.50   2.00     10.00      75.00 

  5.50 -   6.50   2.00     12.00      91.67 

  6.50 -   7.50   0.00     12.00     100.00 

  7.50 -   8.50   0.00     12.00     100.00 

  8.50 -   9.50   0.00     12.00     100.00 

  9.50 -  10.50   0.00     12.00     100.00 

 10.50 -  11.50   0.00     12.00     100.00 

 

Results for group 2, mean =    4.500 

Centile       Value 

Ten           2.600 

Twenty five   3.500 

Median        4.500 

Seventy five  5.500 
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Ninety        6.400 

Score Range    Frequency Cum.Freq. Percentile Rank 

______________ _________ _________ _______________ 

  0.50 -   1.50   0.00      0.00       0.00 

  1.50 -   2.50   1.00      1.00       4.17 

  2.50 -   3.50   2.00      3.00      16.67 

  3.50 -   4.50   3.00      6.00      37.50 

  4.50 -   5.50   3.00      9.00      62.50 

  5.50 -   6.50   2.00     11.00      83.33 

  6.50 -   7.50   1.00     12.00      95.83 

  7.50 -   8.50   0.00     12.00     100.00 

  8.50 -   9.50   0.00     12.00     100.00 

  9.50 -  10.50   0.00     12.00     100.00 

 10.50 -  11.50   0.00     12.00     100.00 

 

Results for group 3, mean =    4.250 

Centile       Value 

Ten           1.600 

Twenty five   2.500 

Median        3.500 

Seventy five  6.500 

Ninety        8.300 

Score Range    Frequency Cum.Freq. Percentile Rank 

______________ _________ _________ _______________ 

  0.50 -   1.50   1.00      1.00       4.17 

  1.50 -   2.50   2.00      3.00      16.67 

  2.50 -   3.50   3.00      6.00      37.50 

  3.50 -   4.50   2.00      8.00      58.33 

  4.50 -   5.50   1.00      9.00      70.83 

  5.50 -   6.50   0.00      9.00      75.00 

  6.50 -   7.50   1.00     10.00      79.17 

  7.50 -   8.50   1.00     11.00      87.50 

  8.50 -   9.50   1.00     12.00      95.83 

  9.50 -  10.50   0.00     12.00     100.00 

 10.50 -  11.50   0.00     12.00     100.00 

 

You can see that the procedure has obtained the centiles and percentiles for the scores in each category of our slice 

variable.  The plot for our data is shown next: 

 

 

Fig. 2.20  Box Plot of the Slice Variable 
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The “whiskers” for each box represent the 10
th

 and 90
th

 percentiles.  The shaded box itself represents the scores 

within the interquartile range.  The mean and the median (50
th

 percentile) are also plotted.  In the above plot one can 

see that there is skewed data in the third group.  The mean and median are visibly separate.  The mean is the dotted 

line and the median is the solid line. 

Plot X Versus Multiple Y Values 

 

 One often has multiple dependent measures where the measures are on a common scale of measurement or 

have been transformed to z scores.  It is helpful to visually plot these multiple variables against an X variable 

common to these measures.  As an example, we will use a file labeled SchoolData.LAZ. We will examine the 

relationship between teacher salaries and student achievement on the Scholastic Aptitude Verbal and Math scores (N 

= 135.)  The dialog form is shown below: 

 

 

Fig. 2.21  Plot X Versus Multiple Y Dialog 

Since we chose the option to show related statistics, we first obtain: 

 
X VERSUS MULTIPLE Y VALUES PLOT 

 

 

CORRELATION MATRIX 

 

             Correlations 

                SATV       SATM  AveTeach$  

SATV            1.000      0.936      0.284  

SATM            0.936      1.000      0.353  

AveTeach$       0.284      0.353      1.000  

 

Means 
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Variables       SATV        SATM   AveTeach$   

              512.637     518.252   46963.230   

 

 

 

Standard Deviations 

 

Variables       SATV        SATM   AveTeach$   

               41.832      44.256    4468.546   

 

 

No. of valid cases = 135 

 

Next we get the plot: 

 

 

Fig. 2.22  Teacher Salaries Versus SAT Achievement 

We notice several things.  First we notice how closely related the two SAT scores are.  Secondly, we notice a trend 

for higher scores as teacher salaries increase.  Of course, a number of explanations could be explored to understand 

these relationships. 

Stem and Leaf Plot 

 

 The stem and leaf plot is one of the earlier ways to graphically represent a distribution of scores for a 

variable.  It essentially reduces the data to the two most significant digits of each value, creates a “stem” for the first 

(leftmost) digit and “leaves” for the second digit.  If there are a large number of “leaves” for a given stem, the 

representation of each leaf digit may have a “depth” of more than 1 value.  This prevents the plot of the individual 

leaf values from spilling over the right edge of your output form.  The stem and leaf does give a quick view of the 

distribution of many variables.  The example we will use is from the SchoolData.LAZ file which contains 135 cases.  

We will create stem and leaf plots for three of the variables in this file.  The dialog form is shown below: 
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Fig. 2.23  Stem and Leaf Plot Dialog 

When we click the Compute button, we obtain: 

 
STEM AND LEAF PLOTS 

Stem and Leaf Plot for variable: SATV 

 

Frequency  Stem & Leaf 

     2       3    89 

    10       4    223444 

    31       4    55667777888999999 

    68       5    00000000011111111222222233333334444 

    23       5    555566777889 

     1       6    0 

 

Stem width = 100.00, max. leaf depth =  2 

Min. value =  387.000, Max. value =  609.000 

No. of good cases = 135 

 

Stem and Leaf Plot for variable: SATM 

 

Frequency  Stem & Leaf 

     1       3    8 

     5       4    334 

    40       4    555666777788888899999 

    57       5    000011111111112222223333333444 

    28       5    5556666777889999 

     4       6    011 

 

Stem width = 100.00, max. leaf depth =  2 

Min. value =  381.000, Max. value =  617.000 

No. of good cases = 135 

 

Stem and Leaf Plot for variable: %College 

 

Frequency  Stem & Leaf 

     1       5    9 

     2       6    34 

     5       6    58899 

    12       7    122223334444 

    25       7    5555666677788888888999999 

    29       8    00001111111112222233333344444 

    30       8    555555566677777778888889999999 

    27       9    000000011111222333444444444 
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     3       9    556 

     1      10    0 

 

Stem width = 10.00, max. leaf depth =  1 

Min. value =   59.000, Max. value =  100.000 

No. of good cases = 135 

 

If we examine this last variable, we note that the stem width is 10.  Now look at the top stem (5) and the leaf value 9.  

These are the two leftmost digits.  We multiply the stem by the stem width to obtain the value 50 and then replace 

the second digit behind the first with the leaf value to obtain 59..  Now examine the previous plot for the SATM 

variable.  The stem width is 100 so the first values counted are those with digits of 380.  This we get by multiplying 

the stem width of 100 times the stem of 3 and entering the second digit of 8 behind the 3.  We also note that the leaf 

depth is 1 in the last plot but is 2 in the previous plot.  This indicates that each leaf digit in the last plot represents 

one value while in the previous plot each leaf represents one or two values.  You might also note that the stems are 

“broken” into a lower half and upper half.  That is, if the second digit is 0 to 4 it is plotted in the lower half of the 

stem value and if 5 to 9 it is plotted in the upper half of the digits for that stem. 

Multiple Group X Versus Y Plot 

 

   When you have obtained data on multiple groups that includes variables possibly related, you have several choices 

for viewing the data graphically.  One would be to plot the two variables (e.g. X and Y) against each other in a 

traditional X vs. Y scatter plot.  This would be repeated by first selecting one group at a time.  Another option would 

be to concurrently plot X vs. Y for all of the groups.  This procedure provides this last alternative.  Our example uses 

the BubblePlot2.LAZ file.  There are eight schools that have been sampled and we wish to plot the Student to 

Teacher ratio (our X variable) against the Achievement variable (our Y variable.)  The dialog for specifying this 

analysis is shown below: 

 

Fig. 2.24  The Multiple Group X vs. Y Plot Dialog 

When we click the OK button we obtain: 

 
X VERSUS Y FOR GROUPS PLOT 

 

VARIABLE  MEAN    STANDARED DEVIATION 

   X         23.125    4.268 

   Y         18.925    3.675 



Statistics and Measurement Concepts for LazStats   William G. Miller ©2012 

 

 57 

 

Fig. 2.25  An X vs. Y Plot for Multiple Groups 

We note the common relationship among all groups that as the Student to Teacher ratio increases, the achievement 

of students in the schools decreases.  The trend is stronger for some schools than others and this suggests we may 

want to complete a further analysis such as a discriminant function analysis to determine whether or not the school 

differences are significant. 

Resistant Line 

 

Tukey (1970, Chapter 10) proposed the three point resistant line as an data analysis tool for quickly fitting a straight 

line to bivariate data (x and y paired data.)  The data are divided into three groups of approximately equal size and 

sorted on the x variable.   The median points of the upper and lower groups are  fitted to the middle group to form 

two slope lines.  The resulting slope line is resistant to the effects of extreme scores of either x or y values and 

provides a quick exploratory tool for investigating the linearity of the data.  The ratio of the two slope lines from the 

upper and lower group medians to the middle group median provides a quick estimate of the linearity which should 

be approximately 1.0 for linearity.  Our example uses the “Cansas.TEX” file.  The dialogue for the analysis appears 

as: 

 

   

Fig. 2.26 Form for Resistant Line 

The results obtained are: 

Original X versus Y Plot Data 
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X = weight, Y = jumps from file: C:\Users\wgmiller\LazStats\LazStatsData\cansas.LAZ 

 

Variable     Mean   Variance  Std.Dev. 

weight      178.60    609.62     24.69 

jumps        70.30   2629.38     51.28 

Correlation = -0.2263, Slope =    -0.47, Intercept =   154.24 

Standard Error of Estimate =    51.32 

Number of good cases = 20 

 
Group   X Median    Y Median    Size 

  1     155.000     155.000     6 

  2     176.000     34.000     8 

  3     197.500     36.500     6 

 

Half Slopes =    -5.762 and     0.116 

Slope =    -2.788 

Ratio of half slopes =    -0.020 

Equation: y =    -2.788 * X + ( -566.361) 

 

 

Fig. 2.27 Median Plot for Resistant Line 

Notice that the estimated slope of the resistant line is slightly different than that obtained from the traditional 

correlation analysis. 

 

Compare Distributions 

 

 It may be desirable to compare the distribution of two continuous variables.  As an example, we have 

loaded a file labeled anova2.LAZ and transformed the dependent variable x to ranks.  We then wish to compare the 

original value x with the rankings on x.  The dialog for the analysis is shown below with the output after that. 
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Fig. 2.28 Form for Comparing Distributions 

Distribution comparison by Bill Miller 

 

                                            RankX        RankX        RankX 

  X1 Value    Frequency   Cum. Freq.     X2 Value    Frequency   Cum. Freq. 

     1.000            3        3.000        2.000            3        3.000 

     1.450            0        3.000        3.750            0        3.000 

     1.900            5        8.000        5.500            5        8.000 

     2.350            0        8.000        7.250            0        8.000 

     2.800            7       15.000        9.000            0        8.000 

     3.250            0       15.000       10.750            7       15.000 

     3.700            7       22.000       12.500            0       15.000 

     4.150            0       22.000       14.250            0       15.000 

     4.600            6       28.000       16.000            0       15.000 

     5.050            0       28.000       17.750            7       22.000 

     5.500            0       28.000       19.500            0       22.000 

     5.950            4       32.000       21.250            0       22.000 

     6.400            0       32.000       23.000            0       22.000 

     6.850            2       34.000       24.750            6       28.000 

     7.300            0       34.000       26.500            0       28.000 

     7.750            1       35.000       28.250            0       28.000 

     8.200            0       35.000       30.000            4       32.000 

     8.650            1       36.000       31.750            0       32.000 

     9.100            0       36.000       33.500            3       35.000 

     9.550            0       36.000       35.250            1       36.000 

 Kolmogorov Probability = 0.55955971019521, Max Dist = 0.25 
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Fig. 2.29 Plot of Cumulative Distributions 

 

Fig. 2.30 Frequency Plot of Two Distributions 

 

Data Smoothing 

 

 Data obtained may often contain “noise” that masks the major variations in a variable.  This noise may be 

reduced by “smoothing” the data.  Several techniques have been developed for this task.  The one included in this 

package involves the averaging of three contiguous values at a time and replacing the lead value with the average.  

This is repeated across the values of the variable (with the exception of the first and last values.)  To demonstrate, 

we have loaded a file labeled boltsize.LAZ and will smooth the VAR1 variable.  The dialog is shown below and a 

comparison plot of the original and smoothed data is also shown.   
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Fig. 2.31 Form for Smoothing Data 

 

Fig. 2.32 Smoothed Data Cumulative Distributions 

 

Fig. 2.33 Smoothed Frequency Distributions 
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Chapter 3.  Comparisons 

Testing Hypotheses for Differences Between or Among Means 

The Nature of Scientific Investigation. 

 

 People have been trying to understand the things they observe for as long as history has been recorded.  

Understanding observed phenomenon implies an ability to describe and predict the phenomenon.  For example, 

ancient man sought to understand the relationship between the sun and the earth.  When man is able to predict an 

occurrence or change in something he observes, it affords him a sense of safety and control over events.  Religion, 

astrology, mysticism and other efforts have been used to understand what we observe.  The scientific procedures 

adopted in the last several hundred years have made a large impact on human understanding.  The scientific process 

utilizes inductive and deductive logic and the symbols of logic, mathematics.  The process involves: 

 

 (a) Making systematic observations (description) 

 (b) Stating possible relationships between or 

  differences among objects observed (hypotheses) 

 (c) Making observations under controlled or natural 

  occurrences of the variations of the objects 

  hypothesized to be related or different 

  (experimentation) 

 (d) Applying an accepted decision rule for stating 

  the truth or falsity of the speculations 

  (hypothesis testing) 

 (e) Verifying the relationship, if observed 

  (prediction) 

 (f) Applying knowledge of the relationship when  

  verified (control) 

 (g) Conceptualizing the relationship in the context 

  of other possible relationships (theory). 

 

The rules for deciding the truth or falsity of a statement utilizes the assumptions developed concerning the chance 

occurrence of an event (observed relationship or difference).  These decision rules are particularly acceptable 

because the user of the rules can ascertain, with some precision, the likelihood of making an error, whichever 

decision is made! 

 

 As an example of this process, consider a teacher who observes characteristics of children who mark false 

answers true in a true-false test as different from children who mark true answers as false.  Perhaps the hypothetical 

teacher happens to notice that the proportion of left-handed children is greater in the first group than the second.  

Our teacher has made a systematic observation at this point.  Next, the teacher might make a scientific statement 

such as "Being left-handed increases the likelihood of responding falsely to true-false test items."  Another way of 

making this statement however could be "The proportion of left-handed children selecting false options of true 

statements in a true-false test does not differ from that of right handed children beyond that expected by sampling 

variability alone."  This latter statement may be termed a null hypothesis because it states an absence (null) of a 

difference for the groups observed.  The null hypothesis is the statement generally accepted for testing because the 

alternatives are innumerable.  For example (1) no difference exists or (2) some difference exists.  The scientific 

statement which states the principle of interest would be difficult to test because the possible differences are 

innumerable.  For example, "increases" in the example above is not specific enough.  Included in the set of possible 

"increases" are 0.0001, 0.003, 0.012, 0.12, 0.4, etc.  After stating the null hypothesis, our scientist-teacher would 

make controlled observations.  For example, the number of "false" options chosen by left and right handed children 

would be observed after controlling for the total number of items missed by each group.  This might be done by 

matching left handed children with right handed children on the total test scores.  The teacher may also need to 

insure that the number of boys and girls are also matched in each group to control for the possibility that sex is the 

variable related to option choices rather than handedness.  We could continue to list other ways to control our 

observations in order to rule out variables other than the hypothesized ones possibly affecting our decision. 
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 Once the teacher has made the controlled observations, decision rules are used to accept or reject the null 

hypothesis.  We will discover these rules involve the chances of rejecting a true null hypothesis (Type I error) as 

well as the chances of accepting a false null hypothesis (Type II error). 

 

 Because of the chances of making errors in applying our decision rules, results should be verified through 

the observation of additional samples of subjects. 

Decision Risks. 

 

 Many research decisions have different losses which may be attached to outcomes of an experiment.  The 

Fig. below summarizes the possible outcomes in testing a null hypothesis.  Each outcome has a certain probability of 

occurrence.  These probabilities (chances) of occurrence are symbolized by Greek letters in each outcome cell. 
 

Possible Outcomes of an Experiment 

 

                              True State of Nature 

     Ho True  Ho False 

Experimenter   |----------------|---------------| 

conclusion  accept |    1 -        |     ß         | 

based on     Ho   |                | Type II error | 

observed    |----------------|---------------| 

data   reject | Type I Error   |               | 

     Ho   |               |   1 - ß       | 

                        |----------------|---------------| 

 

 In the above Fig.  (alpha) is the chance of obtaining a sample which leads to rejection of the null 

hypothesis when in the population from which the sample is drawn the null hypothesis is actually true.  On the other 

hand, we also have the chance of drawing a sample that leads us to accept a null hypothesis when, in fact, in the 

population we should reject it.  This latter error has ß (Beta) chances of occurring.  Greek symbols have been used 

rather than numbers because the experimenter may control the types of error!  For example, by selecting large 

samples, by reducing the standard deviation of the observed variable (for example by improving the precision of 

measurement), or by decreasing the size of the discrepancy (difference) we desire to be sensitive to, we can control 

both Type I and Type II error. 

 

 Typically, the chances of getting a Type I error is arbitrarily set by the researcher.  For example, the value 

of alpha may be set to .05.  Having set the value of α, the researcher can establish the sample size needed to control 

Type II error which is also arbitrarily chosen (e.g. ß = .2).  In other cases, the experimenter is limited to the sample 

size available.  In this case the experimenter must also determine the smallest difference or effect size (alternate 

hypothesis) to which he or she wishes to be sensitive. 

 

 How does a researcher decide on α, ß and a minimum discrepancy?  By assessing or estimating the loss or 

consequences in making each type of error!  For example, in testing two possible cancer treatments, consider that 

treatment 1 costs $1,000 while treatment 2 costs $100.  Consider the null hypothesis 

 

 Ho: no difference between treatments (i.e. equally effective) 

 

and consider the alternative 

 

 H1: treatment 1 is more effective than treatment 2. 

 

If we reject Ho: and thereby accept H1: we will pay more for cancer treatment.  We would probably be glad to do 

this if treatment 1 were, in fact, more effective.  But if we have made a Type I error, our losses are 10 to 1 in dollars 

lost.  On the other hand, consider the loss if we should accept H0: when, in fact, H1: is correct.  In this case lives 

will be lost that might have been saved.  What is one life worth?  Most people would probably place more than 
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$1,000 value on a life.  If so, you would probably choose a smaller ß value than for .  The size of both these values 

are dependent on the size of risk you are willing to take.  In the above example, a ß = .001 would not be 

unreasonable. 

 

  Part of our decision concerning α and ß also is based on the cost for obtaining each observation.  

Sometimes destructive observation is required.  For example, in testing the effectiveness of a manufacturer's 

military missiles, the sample drawn would be destroyed by the testing.  In these cases, the cost of additional 

observations may be as large as the losses associated with Type I or Type II error! 

 Finally, the size of the discrepancy selected as "meaningful" will affect costs and error rates.  For example, 

is an IQ difference of 5 points between persons of Group A versus Group B a "practical" difference?  How much 

more quickly can a child of 105 IQ learn over a child of 100 IQ?  The larger the difference selected, the smaller is 

the sample needed to be sensitive to true population differences of that size.  Thus, cost of data collection may be 

conserved by selecting realistic differences for the alternative hypothesis.  If sample size is held constant while the 

discrepancy is increased, the chance of a Type II error is reduced, thus reducing the chances of a loss due to this type 

of error.  We will examine the relationships between Type I and Type II error, the discrepancy chosen for an 

alternative hypothesis, and the sample size and variable's standard deviation in the following sections. 

 

Hypotheses Related to a Single Mean. 

 

 In order to illustrate the principles of hypothesis testing, we will select an example that is rather simple.  

Consider a hypothetical situation of the teacher who has administered a standardized achievement test in algebra to 

high school students completing their first course in algebra.  Assume that extensive "norms" exist for the test 

showing that the population of previously tested students obtained a mean score equal to 50 and a standard deviation 

equal to 10.  Further assume the teacher has 25 students in the class and that the class test mean was 55 and the 

standard deviation was 9.  The teacher feels that his particular method of instruction is superior to those used by 

typical instructors and results in superior student performance.  He wishes to provide evidence for his claim through 

use of the standardized algebra test.  However, other algebra teachers in his school claim his teaching is really no 

better than theirs but requires half again as much time and effort.  They would like to see evidence to substantiate 

their claim of no difference.  What must our teachers do?  The following steps are recommended by their school 

research consultant: 

 

 1. Agree among themselves how large a difference 

  between the past population mean and the mean of 

   the sampled population is a practical increment 

  in algebra test performance. 

 2. Agree upon the size of Type I error they are 

  willing to accept considering the consequences. 

 3. Because sample size is already fixed (n=25), they 

  cannot increase it to control Type II error.  They 

  can however estimate what it will be for the  

  alternative hypothesis that the sampled population 

  mean does differ by a value as large or larger 

  than that agreed upon in (2) above. 

 4. Use the results obtained by the classroom teacher 

  to accept or reject the null hypothesis assuming 

  that the sample means of the kind obtained by the 

  teacher are normally distributed and unbiased  

  estimates of the population mean.  This is  

  equivalent to saying we assume the teacher's class 

  is a randomly selected sample from a population of 

  possible students taught be the instructor's 

  method.  We also assume that the effect of the  

  instructor is independent for each student, that 

  is, that the students do not interact in such a 

  way that the score of one student is somehow  
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  dependent on the score obtained by another 

  student. 

 

 By assuming that sample means are normally distributed, we may use the probability distribution of the 

normally distributed z to test our hypothesis.  Based on a theorem known as the "Central Limit Theorem", it can be 

demonstrated that sample means obtained from scores that are NOT normally distributed themselves DO tend to be 

normally distributed!  The larger the sample sizes, the closer the distribution of sample means approaches the 

normal distribution.  You may remember that our z score transformation is 

                     _ 

               X - X     d 

         z =  -----  =  --        (3.1) 

                Sx        Sx 

 

when determining an individual's z score in a sample.  Now consider our possible sample means in the above 

experiment to be individual scores that deviates (d) from a population mean (μ) and have a standard deviation equal 

to 

 

                      Sx 

             S-  =  --         (3.2)  

              X      √n 

 

That is, the sample means vary inversely with the square root of the sample size.  The standard deviation of sample 

means is also called the standard error of the mean.  We can now transform our sample mean (55) into a z score 

where μ = 50 and the standard error is Se = Sx  / √n = 10 / 5 = 2.  Our result would be: 

                  _ 

                   X - μ0        55 - 50 

           z0 = ------    = ---------  =  2.5       (3.3) 

                     Se              2 

 

Note we have used a small zero subscript by the population mean to indicate this is the null hypothesis mean. 

 

 Before we make any inference about our teacher's student performance, let us assume that the teachers 

agreed among themselves to set the risk of a Type I error rather low, at .05, because of the inherent loss of greater 

effort and time on their part if the hypothesis is rejected (assuming they adopt the superior teaching method).  Let us 

also assume that the teachers have agreed that a class that achieves an average mean at least 2 standard deviations of 

the sample means above the previous population mean is a realistic or practical increment in algebra learning.  This 

means that the teachers want a difference of at least 4 points from the mean of 50 since the standard error of the 

means is 2.   

 Now examine the Fig. below.  In this Fig. the distribution of sample means is shown (since the statistic of 

interest is the sample mean.)  A small caret (^) is shown at the scale point where our specific sample statistic (the 

mean) falls in the theoretical distribution that has a mean of 50 and standard error of 2.  Also shown, by shading is 

the area corresponding to the extreme .05 area of the distribution. 
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Fig. 3.1   Distribution of Sample Means 

 Examination of the previous Fig. indicates that the sample mean obtained deviates from the hypothesized 

mean by a considerable amount (5 points).  If we were obtaining samples from a population in which the mean was 

50 and the standard error of the means was 2, we would expect to obtain a sample this deviant only .006 of the time!  

That is, only .006 of normally distributed z scores are as large or larger than the z = 2.5 that we obtained!  Because 

our sample mean is SO deviant for the hypothesized population, we reject the hypothesized population mean and 

instead accept the alternative that the population from which we did sample has a mean greater than 50.  If our 

statistic had not exceeded the z score corresponding to our Type I error rate, we would have accepted the null 

hypothesis.  Using a table of the normally distributed z score you can observe that the critical value for our decision 

is a z  = 1.645.   

 To summarize our example, we have thus far: 

 

 1. Stated our hypothesis.  In terms of our critical 

  z score corresponding to µ, we may write the 

  hypothesis as 

 

   H0:  z < zµ       

          (3.4) 

 2. Stated our alternate hypothesis which is 

 

   H1: z > zµ 

 

 3. Obtained sample data and found that z > zµ which 

  leads us to reject H0: in favor of H1: . 

 

Determining Type II Error and Power of the Test 

 

 In the example described above, the teachers had agreed that a deviation as large as 2 times the standard 

deviation of the means would be a "practical" teaching gain.  The question may be asked, "What is the probability of 

accepting the null hypothesis when the true population mean is, in fact, 2 standard deviations (standard error) units 

above the hypothesized mean?"  The Fig. below illustrates the theoretical distributions for both the null hypothesis 

and a specific alternate hypothesis, i.e. H1= 54. 



Statistics and Measurement Concepts for LazStats   William G. Miller ©2012 

 

 67 

 

Fig. 3.2  Sample Size Estimation 

The area to the left of the α value of 1.645 (frequently referred to as the region of rejection) under the null 

distribution (left-most curve) is the area of "acceptance" of the null hypothesis - any sample mean obtained that falls 

in this region would lead to acceptance of the null hypothesis.  Of course, any sample mean obtained that is larger 

than the z = 1.645 would lead to rejection (the shaded portion of the null distribution).  Now we may ask, "If we 

consider the alternative distribution (i.e. μ = 54), what is the z value in that distribution which corresponds to the z 

value for µ under the null distribution?"  To determine this value, we will first transform the z score for alpha under 

the null distribution back to the raw score X to which it corresponds.  Solving the z score formula for X we obtain 

 

                _ 

                X = zµ S- + μ0
 

                            X 

              _          (3.5) 

 or         X = 1.645 (2) + 50  = 53.29 

 

 Now that we have the raw score mean for the critical value of alpha, we can calculate the corresponding z 

score under the alternate distribution, that is 

                    _ 

                    X  -  μ
1
      53.29 - 54 

              z
1
  = --------  =  -----------  =  -.355      (3.6) 

                       S-                  2 

                        X 

 

We may now ask, "What is the probability of obtaining a unit normal z score less than or equal to -.355?"  Using a 

table of the normal distribution or a program to obtain the cumulative probability of the z distribution we observe 

that the probability is ß = .359.  In other words, the probability of obtaining a z score of -.355 or less is .359 under 

the normal distribution.  We conclude then that the Type II error of our test, that is, the probability of incorrectly 

accepting the null hypothesis when, in fact, the true population mean is 54 is .359.  Note that this nearly 36% chance 

of an error is considerably larger than the 5% chance of making the Type I error! 
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 The sensitivity of our statistical test to detect true differences from the null hypothesized value is called the 

Power of our test.  It is obtained simply as 1 - ß.  For the situation of detecting a difference as large as 4 (two 

standard deviations of the sample mean) in our previous example, the power of the test was 1 - .359 = .641.  We 

may, of course, determine the power of the test for many other alternative hypotheses.  For example, we may wish to 

know the power of our test to be sensitive to a discrepancy as large as 6 X score units of the mean.  The Fig. below 

illustrates the power curves for different Type I error rates and  

differences from the null hypothesis. 

Fig. 3.3   Power Curves 

 

Again, our procedure for obtaining the power would be 

 

 a) Obtain the raw X-score mean corresponding to the 

  critical value of α (region of rejection) under 

  the null hypothesis.  That is 

                _ 

                X  =  zα S- + μ0        (3.7) 

                               X 

 

                   =  1.645 (2) + 50 = 53.29 

 

 b) Obtain the z
1
 score equivalent to the critical 

  raw score for the alternate hypothesized 

  distribution, e.g. 

                            _ 

                z
1
  =  (X - μ1) / S-       (3.8) 

                                           X 

 

                    =  (53.29 - 56) / 2 

 

                    =  -2.71 / 2 

 

                    =  -1.355 

 

 c) Determine the probability of obtaining a more 

  extreme value than that obtained in (b) under 

  the unit-normal distribution, e.g. 
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                P (z  <  z1 | ND: μ = 0, σ = 1) =    

 

                P (z  <  -1.355 | ND: μ = 0, σ = 1) = .0869     (3.9) 

 

 d) Obtain the power as 1 - ß = 1.0 - .0869 = .9131   (3.10) 

 

 One may repeat the above procedure for any number of alternative hypotheses and plot the results in a Fig. 

such as that shown above.  The above plot was made using the LazStats option labeled “Generate Power Curves” in 

the Utilities menu. 

 

  As the critical difference increases, the power of the test to detect the difference increases.  Minimum power is 

obtained when the critical difference is equal to zero.  At that point power is equal to α, the Type I error rate.  A 

different "power curve" may be constructed for every possible value of α.  If larger values of α are selected, for 

example .20 instead of .05, then the test is more powerful for detecting true alternative distributions given the same 

meaningful effect size, standard deviation and sample size. 

 

 The Fig. 6 above shows the power curves for our example when selecting the following values of α: .01,   

.05, and .10. 

 

Sample Size Requirements for the Test of One Mean 

 

 The translation of a raw score mean into a standard score was obtained by 

 

                       _ 

                       X - μ 

                  z  = -----        (3.11) 

                         S- 

                          X 

 

Likewise, the above formula may be rewritten for translating a z score into the raw score mean by: 

 

 

                 _ 

                 X  =  S- z  +  μ        (3.12) 

                            X 

 

Now consider the distribution of an infinite number of sample means where each mean is based on the same number 

of randomly selected cases. Even if the original scores are not from a normally distributed population, if the means 

are obtained from reasonably large samples (N >30), the means will tend to be normally distributed.  This 

phenomenon is known as the Central Limit Theorem and permits us to use the normal distribution model in testing a 

wide range of hypotheses concerning sample means. 

 

 The extreme "tails" of the distribution of sample means are sometimes referred to as "critical regions".  

Critical regions are defined as those areas of the distribution which are extreme, that is unlikely to occur often by 

chance, and which represent situations where you would reject the distribution as representing the true population 

should you obtain a sample in that region.  The size of the region indicates the proportion of times sample values 

would result in rejection of the null hypothesis by chance alone - that is, result in a "Type I" error.  For the situation 

of our last example, the full region "R" of say .05 may be split equally between both tails of the distribution, that is, 

.025 or R / 2 is in each tail.  For normally distributed statistics a .025 extreme region corresponds to a z score of 

either -1.96 for the lower tail or +1.96 for the upper tail.  The critical sample mean values that correspond to these 

regions of rejection are therefore 

             _ 

             Xc  = ± σ- zα/2  +  μ0                     (3.13) 

                         X 

                                                                                           _ 
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 In addition to the possibility of a critical score (Xc) being obtained by chance part of the time (α) there also 

exists the probability (ß) of accepting the null hypothesis when in fact the sample value is obtained from a 

population with a mean different from that hypothesized.  Carefully examine the Fig. 3.4 below. 

 

 

 

Fig. 3.4  Null and Alternate Hypotheses for Sample Means 

 This Fig. represents two population distributions of means for a variable.  The distribution on the left 

represents the null hypothesized distribution.  The distribution on the right represents an alternate hypothesis, that is, 

the hypothesis that a sample mean obtained is representative of a population in which the mean differs from the null 

distribution mean be a given difference D.  The area of this latter distribution to the left of the shaded alpha area of 

the left curve and designated as ß represents the chance occurrence of a sample falling within the region of 

acceptance of the null hypothesis, even when drawn from the alternate hypothesized distribution.  The score value 

corresponding to the critical mean value for this alternate distribution is: 

           _ 

           Xc  =  σ- zß + μ
1
                          (3.14 ) 

                        X 

 

 Since formulas (1) and (2) presented above are both equal to the same critical value for the mean, they are 

equal to each other!  Hence, we may solve for N, the sample size required in the following manner: 

 

           σ- zα  +  μ0  =  σ_zβ + μ1 

            X                     X        (3.15) 

 

  where μ
1
  =  μ0 - D 

 

          and   σ-  =  σx / √N        (3.16) 

                    X 

 

Therefore, 
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          (σx / √N) z α  + μ0  =  (σx / √N) zß + μ1     (3.17) 

 

or μ1-μ0 = (σx / √N)zα - (σx / √N)zβ)       (3.18) 

 

or  D = σx / √N (zα - zβ)        (3.19) 

 

or √N = (σx / D)(zα - zβ)        (3.20) 

 

   Note: zβ is a negative value in the above 

   drawing because we are showing an alternative 

   hypothesis above the null hypothesis.  For an 

   alternative hypothesis below the null, the 

   result would yield an equivalent formula. 

 

By squaring both sides of the above equation, we have an expression for the sample size N required to maintain both 

the selected α rate and ß rate of errors, that is 

 

                     σx
2 

             N  = --- (zα + z
ß
)2                         (3.21) 

                      D
2
 

 

 To demonstrate this formula (4) let us use the previous example of the teacher's experiment concerning a 

potentially superior teaching method.  Assume that the teachers have agreed that it is important to contain both Type 

I error (α) and Type II error (ß) to the same value of .05.  We may now determine the number of students that would 

be required to teach under the new teaching method and test.  Remember that we wished to be sensitive to a 

difference between the population mean of 50 by at least 4 points in the positive direction only, that is, we must 

obtain a mean of at least 54 to have a meaningful difference in the teaching method.  Since this is a "one-tailed" test, 

α will be in only one tail of the null distribution.  The z score which corresponds to this α value is 1.645.  Similarly 

the value of z corresponding to the ß level of .05 is also 1.645.  The sample size is therefore obtained as 

 

                   102 

          N  =  --- (1.645 + 1.645)2 

                    4
2
 

                                        2 

             = (100/16) (3.29)  = (100/16) * 10.81 = 67.65 

 

or approximately 68 students. 

 

Clearly, to provide control over both Type I and Type II error, our research is going to require a larger sample size 

than originally anticipated!  In this situation, the teacher could simply repeat the teaching with his new method with 

additional sections of students or accept a higher Type II error. 

 

 It is indeed a sad reflection on much of the published research in the social sciences that little concern has 

been expressed for controlling Type II error.  Yet, as we have seen, Type II error can often lead to more devastating 

costs or consequences than the Type I error which is usually specified!  Perhaps most of the studies are restricted to 

small available (non-random) samples, or worse, the researcher has not seriously considered the costs of the types of 

error.  Clearly, one can control both types of error and there is little excuse for not doing so! 

Confidence Intervals for a Sample Mean 

 

 When a mean is determined from a sample of scores, there is no way to know anything certain about the 

value of the mean of the population from which the sample was drawn.  We do know however sample means tend to 

be normally distributed about the population mean.  If an infinite number of samples of size n were drawn at 

random, the means of those samples would themselves have a mean μ and a standard deviation of σ / √n .  This 

standard deviation of the sample means is called the standard error of the mean because it reflects how much in error 
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a sample mean is in estimating the population mean μ on the average.  Knowing how far sample means tend to 

deviate from μ in the long run permits us to state with some confidence what the likelihood (probability) is that 

some interval around our single sample mean would actually include the population mean μ. 

 

 Since sample means do tend to be normally distributed about the population mean, we can use the unit-

normal z distribution to make confidence statements about our sample mean.  For example, using the normal 

distribution tables or programs, we can observe that 95 percent of normally distributed z scores have values between 

-1.96 and +1.96.  Since sample means are assumed to be normally distributed, we may say that 95% of the sample 

means will surround the population mean μ in the interval of ± 1.96 the standard error of the means.  In other words, 

if we draw a random sample of size n from a population of scores and calculate the sample mean, we can say with 

95% confidence that the population mean is in the interval of our sample mean plus or minus 1.96 times the standard 

error of the means.  Note however, that μ either is or is not in that interval.  We cannot say for certain that μ is in the 

interval - only that we are some % confident that it is! 

 

 The calculation of the confidence interval for the mean is usually summarized in the following formula: 

                        _ 

           CI%  = X ± z% σ-                               (3.22) 

                                        X 

 

Using our previous example of this chapter, we can calculate the confidence interval for the sample mean of 55 and 

the standard error for the sample of 25 subjects = 2 as 

                                          _ 

  CI95  = X ± (1.96) 2      (3.23) 

 

                =  51.08 to 58.92 

 

We state therefore that we are 95 percent confident that the actual population mean is between 58.92 and 51.08.  

Notice that the hypothesized mean (50) is not in this interval!  This is consistent with our rejection of that null 

hypothesis.  Had the mean of the null hypothesis been "captured" in our interval, we would have accepted the null 

hypothesis. 

 

 Another way of writing equation (5) above is 

                         _                       _ 

     probability (X - z1σ_ <  μ < X + z2 σ_) = P     (3.24) 

                                    X                        X 

 

 where z1 and z2 are the z scores corresponding to the 

 lower and upper values of the % confidence desired, and 

 P is the probability corresponding to the % confidence. 

 

For example we might have written our results of the teacher experiment as 

 

     probability [(55 - 1.96(2) < μ <  55 + 1.96(2)] = .95 

 

or   probability (51.08 < μ < 58.92) = .95 

 

Frequency Distributions 

 

 A variable is some measure or observation of an attribute that varies from subject to subject.  We are 
frequently interested in the shape of the distribution of the frequencies of objects who's scores fall in each category 
or interval of our variable.  When the shape of the frequency distribution closely resembles that of a theoretical 
model of such distributions, we may utilize statistics developed for those theoretical distributions to describe our 
observations.  We will examine some of the most common theoretical distributions.  First, let us consider a simple 
Fig. representing the frequency of scores found in intervals of a classroom teacher's test.  We will assume the 
teacher has administered a 20 item test to 80 students and has "plotted" the number of students obtaining the 
various total scores possible.  The plot might look as follows: 
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Frequency 

10                                  * 

 9                              *      * 

 8                          *             * 

 7                       *                   * 

 6 

 5                    *                         * 

 4 

 3                 *                              * 

 2               *                                   * 

 1            *                                          * 

 0      *  *                                                *  * 

     ________________________________________________________________ 

 0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 

                          Total Test Score 

Fig. 3.5 Sample Plot of Test Scores 

We can also express the number of subjects in each score range as a proportion of the total number of observations.  
For example, we could divide each of the frequencies above by 80 (the number of observations) and obtain: 
Proportion 

.1250                               * 

.1125                           *      * 

.1000                       *             * 

.0875                    *                   * 

.0750 

.0625                 *                         * 

.0500 

.0375              *                              * 

.0250            *                                   * 

.0125         *                                          * 

.00  *  *  *                                                *  * 

     ____________________________________________________________ 

   0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 

                           Total Test Score 

Fig. 3.6  Sample Proportions of Test Scores 

 If the above distribution of the proportion of test scores at each possible value had been obtained on a very, 
very large number of cases in a population of subjects, we would refer to the proportions as probabilities.  We would 
then be able to make statements such as "the probability of a student earning a score of 10 in the population is 0.01." 
 
 Sometimes we draw a Fig. that represents the cumulative frequencies divided by the total number of 
observations.  For example, if we accumulate the frequencies represented in the previous Fig. the cumulative 
distribution would appear as: 
 

 

Cum.Prob. 

1.0                                                    *  *  *  * 

0.9                                           *  *  * 

0.8                                     *  * 

0.7                                 * 

0.6                              * 

0.5 

0.4                            * 

0.3                         * 

0.2                      * 

0.1                *  * 

0.0 *  *  *  *  * 

    _____________________________________________________________ 

    0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 

Total Test Score 

Fig. 3.7 Sample Cumulative Probabilities of Test Scores 
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 If the above 80 observations constituted the population of all possible observations on the 20 item test, we 
have no need of statistics to estimate population parameters.  We would simply describe the mean and variance of 
the population values.  If, on the other hand, the above 80 scores represents a random sample from a very, very large 
population of observations, we could anticipate that another sample of 80 cases might have a slightly different 
distribution appearance.  The question may now be raised, what is a reasonable "model" for the distribution of the 
population of observations?  There are clearly a multitude of distribution shapes for which the above sample of 80 
scores might be reasonably thought to be a sample.  Because we do not wish to examine all possible shapes that 
could be considered, we usually ask whether the sample distribution could be reasonably expected to have come 
from one of several "standard" distribution models.  The one model having the widest application in statistics is 
called the "Normal Distribution".  It is that model which we now examine. 
 

The Normal Distribution Model 

 

 The Normal Distribution model is based on a mathematical function between the height of a probability 
curve for each possible value on the horizontal axis.  Since the horizontal axis reflects measurement values, we must 
first translate our observations into "standard" units that may be used with any set of observations.  The "z" score 
transformation is the one used, that is, we standardize our scores by dividing a scores deviation from the mean by 
the standard deviation of the scores.  If we know the population mean and standard deviation, the transformation is 
 

x

i
i

XX
z



)( 


        (3.25)

 

 
If the population mean and standard deviation are unknown, then the sample estimates are used instead. 
  

The Normal Distribution function (also sometimes called the Gaussian distribution function) is given by 
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        (3.26)

 

 

where h is the height of the curve at the value z and e is the constant 2.7182818.... . 

 

 To see the shape of the normal distribution for a large number of z scores,  select the Analysis option and 
move the cursor to the Miscellaneous option.  A second menu will appear.  Click on the Normal Distribution Curve 
option. Values of h are drawn for values between approximately -3.0 to +3.0.  It should be noted that the normal 
distribution actually includes values from -infinity to +infinity .  The area under the normal curve totals 1.0.  The 
area between any two z scores on the normal distribution therefore reflect the proportion (or probability) of z scores 
in that range.  Since the z scores may be ANY value from  -infinity to +infinity, the normal distribution reflects 
observations made on a scale considered to yield continuous scores. 

The Median 

 

 While the mean is obtained as the average of scores in a distribution, it is not the only measure of "central 

tendency" or statistic descriptive of the "typical" score in a distribution.  The median is also useful.  It is the "middle 

score" or that value below which lies 50% of the remaining score values.  The difference between the mean and 

median values is an indicator of how "skewed" are the distribution of scores.  If the difference is positive (mean 

greater than the median) this would indicate that the mean is highly influenced by "extremely" high scores.  If you 

plot the distribution of scores, there is typically a "tail" extending to the right (assuming the scores are arranged with 

low scores to the left and higher scores to the right.)  We would say the distribution is positively skewed.  When the 

distribution is negatively skewed the mean is less than the median.  The median is highly useful for describing the 

typical score when the distribution is highly skewed.  For example, the average income in the United States is much 

greater than the median income.  A few millionaires (or billionaires) in the population skews the distribution.  In this 

case, the median is more "representative" of the "typical" income. 
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Skew 

 

 The skew of a distribution is obtained as the third moment of the distribution.  The first moment, the mean, 

is the average of the scores (sum of X's divided by the number of X's.)  The second moment is the variance and is 

the average of the squared deviations from the mean.  The third moment is the average of the cubed deviations from 

the mean.  We can write this as: 

 

Skew = 
N

X  3)( 

        (3.27)

 

Kurtosis 

 

 A distribution may not only be skewed (not bell-shaped) but may also be "flatter" or more "peaked" than 

found in the normal curve.  When a distribution is more flat we say that it is platykurtik.  When it is more peaked we 

say it is leptokurtik.  When it follows the typical normal curve it is described as mesokurtik.  Kurtosis therefore 

describes the general height of the distribution across the score range.  The kurtosis is obtained as the fourth moment 

about the mean.  We can write it as: 

 

Kurtosis = 
N

X  4)( 

        (3.28)

 

 

The Binomial Distribution 

 

 Some observations yield a simple dichotomy that may be coded as 0 or 1.  For example, you may draw a 
sample of subjects and observe the gender of each subject.  A code of 1 may be used for males and 0 for females (or 
vice-versa).  In a population of such scores, the proportion of observations coded 1 (P) is the mean (θ) of the scores.  
The population variance of dichotomous scores is simple θ(1-θ) or  P(1-P).  When a sample is drawn from a 
population of dichotomous scores, the sample mean, usually denoted simply as p, is an estimator of θ and the 
population variance is estimated by p(1-p).  The probability of observing a specific number of subjects that would be 
coded 1 when sampling from a population in which the proportion of such subjects is P can be obtained from 
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          (3.29) 

 where X is the probability, 
 N is the size of the sample, 
 n is the number of subjects coded 1 and 
 P is the population proportion of objects coded 1. 
 

The ! symbol in the above equation is the "factorial" operation, that is, n! means (1)(2)(3)....(n), the product of all 
integers up through n.  Zero factorial is defined to be equal to 1, that is, 0! = 1. 
 

For any sample of size N, we can calculate the probabilities of obtaining 0, 1, 2, ... , n values of the objects 
coded 1 when the population value is P.  Once those values are obtained, we may also obtain the cumulative 
probability distribution.  For example, assume you are sampling males and females from a population with a mean 
of 0.5, that is, the number of males (coded 1) equals the number of females (coded 0).  Now assume you randomly 
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select a sample of 10 subjects and count the number of males (n).  The probabilities for    n = 0, 1, ... , N are as 
follows: 
 

 

 

      No. Males Observed   Probability   Cumulative Probability 

 
          0                   0.00097             0.00097 

          1                   0.00977             0.01074 

          2                   0.04395             0.05469 

          3                   0.11719             0.17188 

          4                   0.20508             0.37695 

          5                   0.24609             0.62405 

          6                   0.20508             0.82813 

          7                   0.11719             0.94531 

          8                   0.04395             0.98926 

          9                   0.00977             0.99902 

         10                   0.00097             1.00000 

 

Now let us plot the above binomial distribution: 
 

Probability 
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0.12-0.13             *              * 
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0.08-0.09 
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0.04-0.05         *                       * 
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0.00-0.01 *   *                               *    * 

          __________________________________________ 

          0   1   2   3   4   5   6   7   8   9   10 

               Frequency of Males in Sample 

            from a population with the number of 

            males equal to the number of females 

 

Fig. 3.8  Sample Probability Plot 

The Poisson Distribution 

 

 The Poisson distribution describes the frequency with which discrete binomial events occur.  For example, 
each child in a school system is either in attendance or not in attendance.  The probability of each child being absent 
is, however, quite small.  The probability of X children being absent from a school increases with the size of the 
school (n).  Another example is in the area of school drop-outs.  Each student may be considered to be either a drop-
out or not a drop-out.  The probability of being a drop-out student is usually quite small.  The probability that X 
students out of n drop out over a given period of time may also be described by the Poisson distribution. 
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 The Fig. below illustrates a representative Poisson distribution: 
 
Frequency 

 10 | 

  9 | 

  8 | 

  7 | 

  6 |           * 

  5 |    *           * 

  4 |*                   * 

  3 |                       * 

  2 |                          * 

  1 |                            * 

  0 |                                    * 

    ---------------------------------------------- 

     0   1   2   3   4   5   6   7   8   9  10  11 

          Course Dropouts Over 18 Week Period 

                     (n = 50) 

Fig. 3.9  A Poisson Distribution 

 The frequency (height) of the Poisson distribution is obtained from the following function: 
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         (3.30)

 

 
 where μ = L, the mean of the population distribution 
 and  = L = the standard deviation of the population distribution 

 

 We note that when a variable (e.g. dropouts occurring) has a mean and standard deviation that are equal in 
the sample, the distribution may fit the Poisson model.  In addition, it is important to remember that the variable (X) 
is a discrete variable, that is, only consists of integer values. 

 

The Chi-Squared Distribution 

 

 In the field of statistics there is another important distribution that finds frequent use.  The chi-squared 

statistic is most simply defined as the square of a normally distributed z score.  Referring back to the paragraph on z 

scores, you will remember that is is obtained as 
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         (3.31)

 

 

that is, the deviation from the mean divided by the variance in the population of normally distributed scores.  The z 

scores in an infinite population of scores ranges from - to +  .  If we square randomly selected z scores, all 

resulting values are greater than or equal to zero.  If we randomly select n z-scores, squaring each one, the sum of 

those squared z scores is defined as a Chi-Squared statistic with n degrees of freedom.  Each time we draw a random 

sample of n z-scores and calculate the Chi-squared statistic, the value may vary from sample to sample.  The 

distribution of these sample Chi-squared statistics follows the distribution density (height) function: 
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   where  is the Chi-squared statistic, 
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   n is the degrees of freedom, 

   e is the constant 2.7181... of the natural logarithm, 

   and () is the gamma function. 

 

 In the calculation of the height of the chi-squared distribution, we encounter the gamma function (Γ).  The 

gamma function is similar to another function, the factorial function (n!).  The factorial of a number like 5, for 

example, is 5 x 4 x 3 x 2 x 1 which equals 80.  The factorial however only applies to integer values.  The gamma 

function however applies to continuous values as well as integer values.  You can approximate the gamma function 

however by interpolating between integer values of the factorial.  For example, the value of Γ(4) is equal to 3! or 3 x 

2 x 1 = 6.  In general, Γ(k-1) = k! 

 

 A sample distribution of Chi-squared statistics with 4 degrees of freedom is illustrated below 
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          _________________________________________________________ 
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Fig. 3.10  Chi-squared Distribution with 4 Degrees of Freedom 

The F Ratio Distribution 

 

 Another sample statistic which finds great use in the field of statistics is the F statistic.  The F statistic may 
be defined in terms of the previously defined Chi-squared statistic.  It is the ratio of two independent chi-squares, 
each of which has been divided by its degrees of freedom, that is 
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         (3.33)

 

 

            where 
2
  is the chi-squared statistic, and 

            n1 and n2 are the degrees of freedom for the numerator 

            and denominator chi-squares. 

 

 As before, we can develop the theoretical model for the sampling distribution of the F statistic.  That is, we 

assume we repeatedly draw independent samples of n1 and n2 normally distributed z-scores, 

square each one, sum them up in each sample, and form a ratio of the two resulting chi-squared statistics.  The 

height (density) function is given as  
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           where F is the sample statistic, 
           n1 and n2 are the degrees of freedom, and  

           () is the gamma function described in the previous 

           paragraph. 

 

 An example of the distribution of the F statistic for n1 and n2 degrees of freedom may be generated using 

the Distribution Plots and Critical Value procedure from the Simulation menu in your LazStats package.  

The “Student” t Test 

 

 The z statistic used to test hypotheses concerning sample means assumes the use of the normal distribution.  

However we have seen that the unbiased estimate of the standard deviation of the sample means is “adjusted” for the 

sample size, that is S / √(N-1).  If N is large, the distribution we can normally assume the distribution of the means is 

normal.  When N is small, the “fit” to the normal distribution is less likely.  William Gosset (who published under 

the name “Student”) developed the mathematics for distributions that differ for the size of N but approach the 

normal (Gaussian) distribution as N increases in size.  We obtain our statistic t in the same manner that we did for 

the z tests but instead of using the normal distribution, we use the t distribution.  This distribution is described by the 

following equation: 

 

       C 

y = ________________        (3.35) 

     [1 + (t
2
 / df)]

(df+1)/2 

 

Where 

 

 

        [(df – 1) / 2]! 

C = ________________________  Note: df is a single value for “degrees of freedom” 

          ____ 

        (ndf)[(df – 2) / 2]! 

 

Shown below are two t distribution plots, the first with 2 degrees of freedom and the second with 100 degrees of 

freedom: 
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Fig. 3.11  t Distribution with 2 Degrees of Freedom 

 

Fig. 3.12   t Distribution with 100 Degrees of Freedom 

If you examine the density (height) of the curve on each of the above plots, you will see that the density is much 

greater for the plot with only 2 degrees of freedom.  The “tails” of the t distribution are greater as the degrees of 

freedom decrease.  If one is testing a hypothesis at the alpha level of say 0.05, it will take a larger value of t in a t-

test in comparison to a z test to be significant for the smaller samples!  The degrees of freedom for the t-test will 

vary depending on the nature of the hypothesis being tested. 

 

Comparisons 

One Sample Tests 

 

 LazStats provides the ability to perform tests of hypotheses based on a single sample.  Typically the user is 

interested in testing the hypothesis that  

 
1.a sample mean does not differ from a specified hypothesized mean, 

2.a sample proportion does not differ from a specified population proportion, 

3.a sample correlation does not differ from a specified population correlation, or 
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4.a sample variance does not differ from a specified population variance. 

 

 The One Sample Test for means, proportions, correlations and variances is started by selecting the 

Comparisons option under the Statistics menu and moving the mouse to the One Sample Tests option which you 

then click with the left mouse button.  If you do this you will then see the specification form for your comparison as 

seen below.  In this form there is a button corresponding to each of the above type of comparison.  You click the one 

of your choice.   There are also text boxes in which you enter the sample statistics for your test and select the 

confidence level desired for the test.  We will illustrate each test.  In the first one we will test the hypothesis that 

a sample mean of 105 does not differ from a hypothesized population mean of 100.  The standard deviation is 

estimated to be 15 and our sample size is 20. 

 

 

Fig. 3.13   Single Sample Tests Dialog For a Sample Mean 

 

When we click the Continue button on the form we then obtain our results in an output form as shown below: 

 
ANALYSIS OF A SAMPLE MEAN 

 

Sample Mean = 105.000 

Population Mean = 100.000 

Sample Size = 20 

Standard error of Mean =  3.354 

t test statistic =  1.491 with probability  0.152 

t value required for rejection =  2.093 

Confidence Interval = (97.979,112.021) 

 

We notice that our sample mean is “captured” in the 95 percent confidence interval and this would lead us to accept 

the null hypothesis that the sample is not different from that expected by chance alone from a population with mean 

100. 

         

 Now let us perform a test of a sample proportion.  Assume we have an elective high school course in 

Spanish I.  We notice that the proportion of 30 students in the class that are female is only 0.4 (12 students) yet the 

population of high school students in composed of 50% male and 50% female.  Is the proportion of females enrolled 

in the class representative of a random sample from the population?  To test the hypothesis that the proportion of .4 

does not differ from the population proportion of .5 we click the proportion button of the form and enter our sample 

data as shown below: 
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Fig. 3.14  One Sample Test for a Proportion 

 

When we click the Continue button we see the results as shown below: 

 
ANALYSIS OF A SAMPLE PROPORTION 

 

Sample Proportion =  0.400 

Population Proportion =  0.500 

Sample Size = 30 

Standard error of proportion =  0.091 

z test statistic = -1.095 with probability > P =  0.863 

z value required for rejection =  1.645 

Confidence Interval = ( 0.221, 0.579) 

 

We note that the z statistic obtained for our sample has a fairly high probability of occurring by chance when drawn 

from a population with a proportion of .5 so we are again led to accept the null hypothesis. 

 

 Now let us test a hypothesis concerning a sample correlation.  Assume our Spanish teacher from the 

previous example has given two examinations to the 30 students enrolled in the course.  The first is a standardized 

Spanish aptitude test and the second is a mid-term examination in the course.  The teacher observes a correlation of 

0.45 between the two examinations.  In reading the literature which accompanies the standardized aptitude test the 

teacher notices that the validation study reported a correlation of 0.72 between the test and midterm examination 

scores in a very large sample of students.  The teacher wonders if her observed correlation differs from that of the 

validation study.  We enter our data in the Single Sample form as follows: 

 

Fig. 3.15  One Sample Correlation Test 

 

 

When the Continue button is pressed we obtain on the output form the following results: 
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ANALYSIS OF A SAMPLE CORRELATION 

 

Sample Correlation =  0.450 

Population Correlation =  0.720 

Sample Size = 30 

z Transform of sample correlation =  0.485 

z Transform of population correlation =  0.908 

Standard error of transform =  0.192 

z test statistic = -2.198 with probability  0.014 

z value required for rejection =  1.960 

Confidence Interval for sample correlation = ( 0.107, 0.697) 

 

Observing the small probability of the sample z statistic used to complete the test and noting that the population 

correlation is not in the 95% confidence interval for the sample statistic, our teacher reasonably rejects the null 

hypothesis of no difference and concludes that her correlation is significantly lower than that observed in the 

validation study reported in the test manual. 

 

 It occurs to our teacher in the above example that perhaps her Spanish students are from a more 

homogeneous population than that of the validation study reported in the standardized Spanish aptitude test.  If that 

were the case, the correlation she observed might well be attenuated due to the differences in variances.  In her class 

of thirty students she observed a sample variance of 25 while the validation study for the instrument reported  

a variance of 36.  Let’s examine the test for the hypothesis that her sample variance does not differ significantly 

from the “population” value.  Again we invoke the One Sample Test from the Comparisons option of the Statistics 

menu and complete the form as shown below: 

 

Fig. 3.16   One Sample Variance Test 

 

 

Upon clicking the Continue button our teacher obtains the following results in the output form: 

 
ANALYSIS OF A SAMPLE VARIANCE 

 

Sample Variance = 25.000 

Population Variance = 36.000 

Sample Size = 30 

Chi-square statistic = 20.139 with probability > chisquare =  0.889 and D.F. 

= 29 

Chi-square value required for rejection = 16.035 

Chi-square Confidence Interval = (45.725,16.035) 

Variance Confidence Interval = (15.856,45.215) 
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The chi-square statistic obtained leads our teacher to accept the hypothesis of no difference between her sample 

variance and the population variance.  Note that the population variance is clearly within the 95% confidence 

interval for the sample variance. 

Proportion Differences 

 

 A most common research question arises when an investigator has obtained two sample proportions.  One 

asks whether or not the two sample proportions are really different considering that they are based on observations 

drawn randomly from a population.  For example, a school nurse observes during the flu season that 13 eighth grade 

students are absent due to flu symptoms while only 8 of the ninth grade students are absent.  The class sizes of the 

two grades are 110 and 121 respectively.  The nurse decides to test the hypothesis that the two proportions (.118 and 

.066) do not differ significantly using the LazStats program.  The first step is to start the Proportion Differences 

procedure by clicking on the Statistics menu, moving the mouse to the Comparisons option and the clicking on the 

Proportion Differences option.  The specification form for the test then appears.  We will enter the required values 

directly on the form and assume the samples are independent random samples from a population of eighth and ninth 

grade students. 

 

 

Fig. 3.17   Testing Equality of Two Proportions 

 

When the nurse clicks the Continue button the following results are shown in the Output form: 

 
COMPARISON OF TWO PROPORTIONS 

 

Test for Difference Between Two Independent Proportions 

 

Entered Values 

 

Sample 1: Frequency =    13 for   110 cases. 

Sample 2: Frequency =     8 for   121 cases. 

Proportion 1 =     0.118, Proportion 2 =     0.066, Difference =     0.052 

Standard Error of Difference =     0.038 

Confidence Level selected = 95.0 

z test statistic =     1.375 with probability = 0.0846 

z value for confidence interval =  1.960 

Confidence Interval: (   -0.022,    0.126) 
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The nurse notices that the value of zero is within the 95% confidence interval as therefore accepts the null 

hypothesis that the two proportions are not different than that expected due to random sampling variability.   What 

would the nurse conclude had the 80.0% confidence level been chosen? 

 

 If the nurse had created a data file with the above data entered into the grid such as: 

 

CASE/VAR FLU GROUP 

CASE 1  0 1 

CASE 2  1 1 

 
I.-- 

CASE 110 0 1 

CASE 111 0 2 

 
S-- 

CASE 231 1 2 

 

then the option would have been to analyze data in a file. 

 

In this case, the absence or presence of flu symptoms for the student are entered as zero (0) or one (1) and the grade 

is coded as 1 or 2.  If the same students, say the eighth grade students, are observed at weeks 10 and 15 during the 

semester, than the test assumptions would be changed to Dependent Proportions.  In that case the form changes 

again to accommodate two variables coded zero and one to reflect the observations for each student at weeks 10 and 

15. 

 

 

Fig. 3.18  Testing Equality of Two Independent Proportions (Grid Data) 

Correlation Differences 

 

 When two or more samples are obtained, the investigator may be interested in testing the hypothesis that 

the two correlations do not differ beyond that expected due to random sampling variation.  This test may be 

performed by selecting the correlation differences procedure in the comparison sub-menu of the statistics menu.  

The following form then appears: 
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Fig. 3.19   Test of Difference Between Two Independent Correlations 

 

Notice that the form above permit the user to enter the correlations directly on the form or to compute the 

correlations for two groups by reading the data from the data grid.  In addition, the form permits the user to test the 

difference between correlations where the correlations are dependent.  This may arise when the same two variables 

are correlated on the same sample of subjects at two different time periods or on samples which are “matched” on 

one or more related variables.  As an example, let us test the difference between a correlation of .75 obtained from a 

sample with 30 subjects and a correlation of .68 obtained on a sample of 40 subjects.  We enter our values in the 

“edit” fields of the form and click the continue button.  The results appear below: 

 

 

 
COMPARISON OF TWO CORRELATIONS 

 

Correlation one =  0.750 

Sample size one = 30 

Correlation two =  0.680 

Sample size two = 40 

Difference between correlations =  0.070 

Confidence level selected = 95.0 

z for Correlation One =  0.973 

z for Correlation Two =  0.829 

z difference =  0.144 

Standard error of difference =  0.253 

z test statistic =  0.568 

Probability > |z| =  0.285 

z Required for significance =  1.960 

Note: above is a two-tailed test. 

Confidence Limits = (-0.338, 0.565) 

 

 The above test reflects the use of Fisher’s log transformation of a correlation coefficient to an approximate 

z score.  The correlations in each sample are converted to z’s and a test of the difference between the z scores is 

performed.  In this case, the difference obtained had a relatively large chance of occurrence when the null hypothesis 

is true (0.285) and the 95% confidence limit brackets the sample difference of 0.253.  The Fisher z transformation of 

a correlation coefficient is 
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 The test statistic for the difference between the two correlations is: 
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where the denominator is the standard error of difference between two independent transformed correlations: 
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The confidence interval is constructed for the difference between the obtained z scores and the interval limits are 

then translated back to correlations.  The confidence limit for the z scores is obtained as: 
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We can then translate the obtained upper and lower z values using: 
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 For the test that two dependent correlations do not differ from zero we use the following t-test: 
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Tests for Two Means 

t-Tests 

 

 Among the comparison techniques the “Student” t-test is one of the most commonly employed.  One may 

test hypotheses regarding the difference between population means for independent or dependent samples which 

meet or do not meet the assumptions of homogeneity of variance.  To complete a t-test, select the t-test option from 

the Comparisons sub-menu of the Statistics menu.  You will see the form below: 
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Fig. 3.20  Dialog Form For The Student t-Test 

Notice that you can enter values directly on the form or from a file read into the data grid.  If you elect to read data 

from the data grid by clicking the button corresponding to “Values Computed from the Data Grid” you will see that 

the form is modified as shown below. 

 

 

 

Fig. 3.21   Student t-Test For Data in the Data Grid 

 

We will analyze data stored in the Hinkle411.LAZ file. 

 

Once you have entered the variable name and the group code name you click the Continue button.  The following 

results are obtained for the above analysis: 

 
COMPARISON OF TWO MEANS 

 

Variable  Mean      Variance  Std.Dev.  S.E.Mean  N 

Group 1      31.00     67.74      8.23      1.68  24 

Group 2      25.75     20.80      4.56      0.93  24 
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Assuming = variances, t =    2.733 with probability = 0.0089 and  46 degrees of freedom 

Difference =     5.25 and Standard Error of difference =     1.92 

Confidence interval = (    1.38,    9.12) 

Assuming unequal variances, t =    2.733 with probability = 0.0097 and 35.91 degrees of freedom 

Difference =     5.25 and Standard Error of difference =     1.92 

Confidence interval = (    1.35,    9.15) 

F test for equal variances =    3.256, Probability = 0.0032F test for equal variances =    3.256, 

Probability = 0.0032 

 

NOTE: t-tests are two-tailed tests. 

 

 

The F test for equal variances indicates it is reasonable to assume the sampled populations have unequal variances 

hence we would report the results of the test assuming unequal variances.  Since the probability of the obtained 

statistic is rather small (0.01), we would likely infer that the samples were drawn from two different populations.  

Note that the confidence interval for the observed difference is reported. 
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Chapter 4. The Product Moment Correlation 
 

 It seems most living creatures observe relationships, perhaps as a survival instinct.  We observe signs that 

the weather is changing and prepare ourselves for the winter season.  We observe that when seat belts are worn in 

cars that the number of fatalities in car accidents decrease.  We observe that students that do well in one subject tend 

to perform will in other subjects.  This chapter explores the linear relationship between observed phenomena.   

 

 If we make systematic observations of several phenomena using some scales of measurement to record our 

observations, we can sometimes see the relationship between them by “plotting” the measurements for each pair of 

measures of the observations.  As a hypothetical example, assume you are a commercial artist and produce sketches 

for advertisement campaigns.  The time given to produce each sketch varies widely depending on deadlines 

established by your employer.  Each sketch you produce is ranked by five marketing executives and an average 

ranking produced (rank 1 = best, rank 5 = poorest.)   You suspect there is a relationship between time given (in 

minutes) and the average quality ranking obtained.  You decide to collect some data and observe the following: 

 

 

Average Rank (Y) Minutes (X) 

3.8 10 

2.6 35 

4.0 5 

1.8 42 

3.0 30 

2.6 32 

2.8 31 

3.2 26 

3.6 11 

2.8 33 

 

Fig. 4.1  A Negative Correlation Plot 
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Testing Hypotheses for Relationships Among Variables: Correlation 

 

Scattergrams 

 

 While the mean and standard deviation of the previous chapter are useful for describing the central 

tendency and variability of the measures of a single variable, there are frequent situations in which it is desirable to 

obtain an index of how values measured on TWO variables tend to vary in the same or opposite directions.  This 

"co-variability" of two variables may be visually represented by means of a Scattergram, for example, the Fig. 

below represents a scattergram of individual's scores on two variables, X and Y. 

 
 

Scattergram of Two Variables 

 

  14 |                                                     * 

  13 |                                                 *     * 

V 12 |                                             *   *  *   * 

A 11 |                                        *  *    *     * 

R 10 |                               *       *    *  *    * 

I  9 |                                **  ***    *    *  * 

A  8 |                             *     *    *    *  *    

B  7 |                        *  *     *     *    *  

L  6 |                   *    *    *       *   * 

E  5 |              *     *     *      *    * 

   4 |                 *     *      *     * 

Y  3 |             *     *    *    * 

   2 |              *  *    * 

   1 |             *     * 

_____|_____|_____|_____|_____|_____|_____|_____|_____|_____|___ 

     0     1     2     3     4     5     6     7     8     9 

VARIABLE X 

Fig. 4.2  Scattergram of Two Variables 

 In the above Fig., each asterisk (*) represents a subject's position on two scales of measurement - on the X 

scale and on the Y scale.  We can observe that subjects with larger X score values tend to have larger Y score 

values. 

  

 Now consider a set of score pairs representing measurements on two variables, College Grade Point 

Average (GPA) and Perceptions of Inadequacy (PI).  The Fig. below the data represents the scattergram of subject 

scores. 

 

Subject GPA PI 

1 3.8 10 

2 2.6 35 

3 4.0 5 

4 1.8 42 

5 3.0 30 

6 2.6 32 

7 2.8 31 

8 3.2 26 

9 3.6 11 

10 2.8 33 
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 SCATTERGRAM OF GPA VERSUS PI 

 

GPA 

 

4.0  * 

3.8        * 

3.6         * 

3.4 

3.2                           * 

3.0                               * 

2.8                                 * * 

2.6                                  *  * 

2.4 

2.2 

2.0 

1.8                                              * 

1.6 

1.4__________________________________________________________ 

     5    10    15    20    25    30    35    40    45    50 

                   Perceptions of Inadequacy 

Fig. 4.3 Scattergram of a Negative Relationship 

In this example there is a negative relationship between the two variables, that is, as a subject's perceptions of 

inadequacy increase, there is a corresponding decrease in grade point average!  (The data are hypothetical if you 

hadn't guessed). 

 

 Many variables, of course, may not be related at all.  In the following scattergram, there is no systematic 

co-variation between the two variables: 
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  Scattergram of Happiness and Wealth 

 

Happiness 

 

10                           * 

 9                    *           * 

 8                 *     *       *    * 

 7                    *  *         *     * 

 6           *    **    *     *       *  * 

 5             *     *    *     *    * *   * 

 4                *        *      * 

 3                   *         *        * 

 2                     *      *   * 

 1                        * 

 0________________________________________________________ 

 0     1     2     3     4     5     6     7     8     9 

  Wealth Measured as Thousands of Dollars in 

    a Checking Account 

Fig. 4.4 Scattergram of Two Variables with Low Relationship 

 A simple way to construct an index of the relationship between two variables might be to simply average 

the product of the score pairs for the individuals.  Unfortunately, the size of this index would vary as a function of 

the size of the numbers yielded by our measurement scales.  We wouldn't be able to compare the index we obtained 

for, say, grade point averages in high school and college with the index we would obtain for college grade point 

averages and beginning salaries!  On the other hand, an average of score products might be useful if we first 

transformed all of our measurements to a COMMON scale of measurement.  In fact, this is just what Pearson did!  

By converting scores to a scale of measurement such that the mean score is always zero and the standard deviation 

of the scores on a variable is always 1.0, he was able to produce an index which, for any pair of variables, always 

varies between -1.0 and +1.0 ! 

Transformation to z Scores 

 

 We define a z score  as a simple linear transformation of raw scores which involves the formula 
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         (4.1)

 

 

where zi is the z score for an individual, Xi the individual's raw score and Sx is the standard deviation of the set of X 

scores. 

 

 When we have a pair of scores for each individual, we must adopt some method for differentiating between 

the two variables.  Often we simply name the variables X and Y or X1 and X2.  For the case of simple correlation 

discussed in this section, we will adopt the first method, i.e., the use of X and Y.  We will use the second method 

when we start to deal with three or more variables at the same time. 

 

 The Pearson Product-Moment correlation is defined as 
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that is, the average of z score products for the N objects or subjects in our sample.  Note, we have used the BIASED 

standard deviation in our z score transformations (divided by N, not N-1). 

 

 Now let us see how we apply the above formula in obtaining a coefficient of correlation for the above 

scattergram.   First, we must transform our raw scores (Y and X) to z scores.  To do this we must obtain the mean 

and standard deviation for each variable.  In the Fig. below we have obtained the mean and standard deviation of 

each variable, obtained the deviation of each score from the respective mean, and finally, divided each deviation 

score by the corresponding standard deviation.  We have also shown the product of the z scores for both the X and Y 

variables.  It is this product of z scores which, when averaged, yields the product-moment correlation coefficient! 
 

                          _           _ 

case     Y     X    (Yi - Y)    (Xi - X)     yzi     xzi  yzi xzi 

 

 1      3.8   10       .78      - 15.5      1.253  -1.318 -1.651 

 2      2.6   35     - .42         9.5     - .675    .808 - .545 

 3      4.0    5       .98      - 20.5      1.574  -1.743 -2.743 

 4      1.8   42     -1.22        16.5     -1.960   1.403 -2.750 

 5      3.0   30       .02         4.5       .032    .383   .012 

 6      2.6   32     - .42         6.5     - .675    .553 - .373 

 7      2.8   31     - .22         5.5     - .353    .468 - .165 

 8      3.2   26       .18         0.5       .289    .043   .012 

 9      3.6   11       .58      - 14.5       .932  -1.233 -1.149 

10      2.8   33     - .22         7.5     - .353    .638 - .225 

 
      N                     _                     

  Σ Yi   =  30.2        Y  =  3.02 

     i=1 

 

      N                            N           _ 

  ΣYi
2  =  95.08       Sy

2  =  Σ Y2 / N - Y2 

     i=1                          i=1 

 

                               = 9.508 - 9.1204 = 0.3876 

 

                     and  Sy   =  0.62257529 

 

 

      N                     _ 

  Σ Xi  =   255.0       X  =  25.5 

     i=1 

 

     N                             N          _ 

     Σ Xi
2 =  7885.0       Sx

2  =  Σ X2 / N - X2 

    i=1                           i=1 

 

                               = 788.5 - 650.25 = 138.25 

 

                      and Sx   = 11.757976 

 

 ryx = Σ yzi xzi  /  N  =  -9.577 / 10 = -.958 

 

 The above method for obtaining the product-moment correlation is quite laborious and it is easy to make 

arithmetic mistakes and rounding errors.  Let's look for another way which does not require actually computing the z 

scores for each variable.  First, let us substitute the definition of the z scores in the formula for the correlation: 
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The last formula does not require us to use z scores at all.  We only need to use raw X and Y scores!  Since we have 

already learned to compute Sx and Sy in terms of raw scores, we can do a little more algebra manipulation of the 

above formula and obtain 
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 This formula is particularly advantages in that it utilizes the sums and sums of squared scores and the sum 

of cross-products of the X and Y scores.  In addition, it contains fewer divisions which reduces round-off error!  

Using the previous example, we would obtain: 

case     Y     X     Y2        X2     YX 

 

 1      3.8   10    14.44     100     38.0 

 2      2.6   35     6.76    1225     91.0 

 3      4.0    5    16.00      25     20.0 

 4      1.8   42     3.24    1764     75.6 

 5      3.0   30     9.00     900     90.0 

 6      2.6   32     6.76    1024     83.2 

 7      2.8   31     7.84     961     86.8 

 8      3.2   26    10.24     676     83.2 

 9      3.6   11    12.96     121     39.6 

10      2.8   33     7.84    1089     92.4 

      _____ ____  ______    ____     _____ 

 

       30.2  255    95.08    7885    699.8 
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(approximately) 

 

 

 Notice that the product-moment correlation obtained by this method differs by approximately .002 obtained 

in the average of z score products method.  The first method had much more round-off error due to our calculations 

only being carried out to the nearest thousandths.  Our results by this second method are clearly more accurate, even 

for only ten cases! 

 

 If you use the unbiased estimates of variances, other formulas may be written to obtain the product-moment 

correlation coefficient.  Remember we divide the sum of squared deviations about the mean by N-1 for the unbiased 

estimate of population variance.  In this case the average of z-score products is also divided by N-1 and by 

substituting the definition of a z score for both X and Y we obtain: 
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the covariance of x and y 

 

and the unbiased estimates of variance are: 
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 To further understand and learn to interpret the product-moment correlation, LazStats provides a means of 

simulating pairs of data, plotting those pairs, drawing the “best-fitting line” to the data points and showing the 

marginal distributions of the X and Y variables.  Go to the Simulation menu and click on the Bivariate Scatter Plot.  

The Fig. below shows a simulation for a population correlation of -.95 with population means and variances as 

shown.  A sample of 100 cases are generated.  Actual sample means and standard deviations will vary (as sample 

statistics do!) from the population values specified. 
 

POPULATION PARAMETERS FOR THE SIMULATION 

Mean X :=   100.000, Std. Dev. X :=    15.000 

Mean Y :=   100.000, Std. Dev. Y :=    15.000 

Product-Moment Correlation :=    -0.900 

Regression line slope :=    -0.900, constant :=   190.000 

SAMPLE STATISTICS FOR 100 OBSERVATIONS FROM THE POPULATION 

Mean X :=    99.988, Std. Dev. X :=    14.309 

Mean Y :=   100.357, Std. Dev. Y :=    14.581 

Product-Moment Correlation :=    -0.915 

Regression line slope :=    -0.932, constant :=   193.577 

Fig. 4.5 A Simulated Negative Correlation Plot 
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Simple Linear Regression 

 

 The product-moment correlation discussed in the previous section is an index of the linear relationship 

between two continuous variables.  But what is the nature of that linear relationship?  That is, what is the slope of 

the line and where does the line intercept the vertical (Y variable) axis?  This unit will examine the straight line "fit" 

to data points representing observations with two variables.  We will also examine how this straight line may be 

used for prediction purposes as well as describing the relationship to the product-moment correlation coefficient. 

 

 To introduce the "straight line fit" we will first introduce the concept of "least-squares fit" of a line to a set 

of data points.  To do this we will keep the number of X and Y score pairs small.  Examine the Fig. below.  It 

represents a set of 5 score pairs similar to those presented in the previous unit. 

 

Fig. 4.6   X Versus Y Plot of Five Values 

In the Fig., each point represents the intersection of X and Y score values for an observed case.  Also shown is a line 

that represents the "best fitting line" to the data points: 

 
       Case     1  2  3  4  5 

            –---------------- 

  X | 1  2  3  4  5 

            Y | 2  1  3  5  4 

            ----------------- 
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The Least-Squares Fit Criterion 

 

 In regression analysis, we want to develop a formula for a straight line which optimally predicts each Y 

score from a given X score.  For example, if Y is a student's College Grade Point Average (GPA) and X is the high 

school grade point average (HSGPA), we wish to develop an equation which will predict the GPA given the 

HSGPA.  Straight line formulas generally are of the form 

 

  Y = BX + C        (4.12) 

  where B is the slope of the line, 

 and C is a constant representing the point where the line crosses the Y axis.  This  is also called the intercept. 

 

In the Fig. below, B is the slope of the line (the number of Y units (rise) over 1 unit of X (run).  C is the intercept 

where the line crosses the Y axis. 

 

 

 

Fig. 4.7   Plot for a Correlation of 1.0 

 

 If X and Y scores are transformed to z scores using the transformations 
                                _ 

                     zx = (Xi - X) / x    (4.13) 

                                _ 

and                  zy = (Yi - Y) / y    (4.14) 

 

then we may write for our prediction of the corresponding zy scores 

 

                     zy' = bzx + 0     (4.15) 

 

 since the intercept is zero for z scores. 

 

 The Least-Squares criterion implies that the squared difference between each predicted score and actual 

observed score Y is a minimum.  That is 

 
 

 

                      N              2 

                      Σ (zy - zy')   = Minimum      (4.16) 

                     i=1 
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                     where zy' is the predicted zy score for an individual. 

 

The problem is to obtain values of b such that the above statement is true.  If we substitute bzx for each zy' in the 

above equation and expand, we get 
 

                      N 

           Min = Σ [zy - bzx]2        (4.17) 

                    i=1 
 

                 N 

               = Σ (zy
2 + b2zx

2 - 2bzyzx) 

                i=1 

 

                 N                N               N 

               = Σ zy
2 + b2 Σ zx

2 - 2b Σ zyzx      (4.18) 

                i=1             i=1            i=1    
 

 In the mathematics called Calculus, it is learned that the first derivative of a function is either a minimum 

or a maximum.  By taking the partial derivative of the above function Min (we will call it M) with respect to b, we 

get an equation which can be solved for b.  This equation is set equal to zero and solved for b.  The derivative of M 

with respect to be is: 

 

          δM           

          --  =  2b Σ zx
2 - 2 Σ zyzx       (4.19) 

          δb 

 

Setting the derivative to zero and solving for b gives 

 

  0  =  b Σ zx
2 - Σ zyzx      (4.20) 

 

   or     b  = Σ zyzx /  Σ zx
2        (4.21) 

 

Since the sum of squared z scores is equal to N (if we use the biased standard deviation), we see that 

 

  b  =  Σ zxzy / N . 

 

The product-moment correlation was earlier defined to be the average of z score products.  Therefore, the slope of a 

regression line in z score form is simply 
 

  b  =  rxy  

 

The prediction equation is therefore 
 

  zy' = rxy zx       (4.22) 

 

To determine the values of B and C in the equation for raw scores, simply substitute the definition of z scores in the 

above equation, that is 

                   _                  _ 

          (Y' - Y)         (X - X) 

          --------  =  rxy -------        (4.23) 

             sy                  sx 
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                    _               sy        _ 

    or    (Y' - Y)  =  rxy -- (X - X)       (4.24) 

                                     sx 

 

 

 

                                 sy              sy   _      _ 

   or           Y'  =  rxy -- X  - rxy --   X  + Y      (4.25) 

                                 sx              sx 

 

Letting B = rxy(sy / sx), the last equation may be written 

 

                                       _    _ 

                Y' = B X - (B X - Y)       (4.26) 

 

To express the equation is the typical "straight line" equation, let 

                        _       _ 

                C = Y - B X        (4.27) 

 

so that         Y' = B X + C        (4.28) 

 

 To summarize, the least-squares criterion is met when the predicted scores for zy or Y are obtained from 

 

          zy' = r zx         (4.29) 

 

    or    Y'  = B X + C   where B = rxy (sy / sx) and  

                                     

                                       _        _ 

                                C = Y - B X       (4.30) 
 

 

The Variance of Predicted Scores 

 

 We can develop an expression for the variance of predicted scores zy' or Y'.  Using the definition of 

variance, we have 

 

                                      _ 

                             (Y' - Y)2 

                   s2Y' = ---------        (4.31) 

                                 N 

 

By substituting the definition of Y', that is, BX + C, in the above equation, we could show that the variance of 

predicted scores is 

 

                 s2
Y' = rxy

2 sy
2        (4.32) 

 

That is, the variance of the predicted scores is the square of the product-moment correlation between X and Y times 

the variance of the Y scores.  It is also useful to rewrite the above equation as 

 

                 rxy
2 = s2

Y' / sy
2  .       (4.33) 

 

The square of the correlation is that proportion of total score variance that is predicted by X ! 
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The Variance of Errors of Prediction 

 

 Just as we developed an expression for the variance of predicted scores above, we can also develop an 

expression for the variance of errors of prediction, that is, the variance of  

 

             ei  =  (Yi - Yi') for each score. 

 

Again using the definition of variance we can write 

                                  

                           Σ (Yi - Yi')
2 

             s2Y.X = -------------       (4.34) 

                                 N 

 

This formula is biased due to estimating both the mean of X as well as the mean of Y in the population.  For that 

reason the unbiased estimate is 

 

 

                             Σ ei
2 

             s2Y.X = -------        (4.35) 

                             N - 2 

 

The square root of this variance is called the standard error of estimate.  When we can assume the errors of 

prediction are normally distributed, it allows us to estimate a confidence interval for a given predicted score. 

 

 Rather than having to compute an error for each individual, the above formula may be translated into a 

more convenient computational form: 
 

                                                  N - 1 

             s2Y.X = sy
2 (1 - r2xy) -----       (4.36) 

                                                 N - 2 

 

 As an example in using the standard error of estimate, assume we have obtained a correlation of 0.8 

between scores of X and Y for 40 subjects.  If the variance of the Y scores is 100, then the variance of estimate is 

 

            s2Y.X = 100 ( 1.0 - 0.64) (19 / 18) 

 

                  = 38 

 and 

 

 SY.X = √38 = 6.1644 

 

Using plus or minus 1 under the normal distribution, we can state that a predicted Y score would be expected to be 

in the interval (Y' ± 6.2) approximately 68 percent of the time. 

 

Testing Hypotheses Concerning the Pearson Product-Moment Correlation. 

Hypotheses About Correlations in One Population 

 

 The product-moment correlation is an index of the linear relationship between two variables that varies 

between -1.0 and +1.0 with a value of 0.0 indicating no relationship.  When obtaining pairs of X and Y scores on a 
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sample of subjects drawn from a population, one can hypothesize that the correlation in the population does not 

differ from zero (0), i.e. Ho:  = 0.  The test statistic is: 

 

rS

r
t


  with n-2 degrees of freedom, and      (4.37) 

 

2

1 2






n

r
Sr

         (4.38)

 

 

 As an example, assume a sample correlation r = 0.3 is obtained from a random selection of 38 subjects 
from a population of subjects.  To test the hypothesis that the population correlation does not differ significantly 
from zero in either direction, we would obtain 
 

158989866.0
238

09.1





rS

       (4.39)

 

 

and 

 

t = r / Sr  = .3 / 0.158989866 = 1.886912706      (4.40) 

 

With n-2 = 36 degrees of freedom, the t value obtained would be considered significant at the 0.05 level for a one-
tailed test (r > 0), hence we would fail to retain the null hypothesis (reject). 
     

 

Test That the Correlation Equals a Specific Value 

 

 The sampling distribution of the product-moment correlation is approximately normal or t distributed when 
sampled from a population in which the true correlation is zero.  Occasionally, however, one wishes to test the 
hypothesis that the population correlation does not differ from some specified value ρ not equal to zero.  The 
distribution of sample correlations from a population in which the correlation differs from zero is skewed, with the 
degree of skewness increasing as the population correlation differs from zero.  It is possible to transform the 
correlations to a statistic which has a sampling distribution that is approximately normal in shape.  The 
transformation, credited to Fisher, is: 
 

                                   1+r 
 zr = 0.5 loge(---)        (4.41) 

                                   1-r 

 

This statistic has a standard error of: 
 

 Sr = σ[1/(n-3)]        (4.42) 

 

 Using the above, a t-test for the hypothesis Ho:ρ=a can be obtained as 

 

                zr - zρ 

          z  =  -------         (4.43) 

                  Sr 

 

 For example, assume we have obtained a sample correlation of r = 0.6 on 50 subjects and we wish to test 
the hypothesis that the population correlation does not differ from 0.5 in the positive direction.  We would first 
transform both the sample and population correlations to the Fisher's z score and obtain: 



Statistics and Measurement Concepts for LazStats   William G. Miller ©2012 

 

 104 

 

 zr = .5loge[(1+.6)/(1-.6)] = 0.6931472     (4.44) 

 

and 
 zρ = .5loge[(1+.5)/(1-.5)] = 0.5493061     (4.45) 

 

Next, we obtain the standard error as 
 
     S  = σ[1/(n-3)] =σ[1/(50-3)] = 0.145865      (4.46) 
      zr  

 

 

Our test statistic is then 
 

             zr - zρ        0.143841 

       z  =  -------  =  ----------  =  0.986      (4.47) 

               S             0.145865 

                zr 

 

 Approximately .16 of the area of the normal curve lies beyond a z of .986.  We would retain our null 
hypothesis if our decision rule was for a probability of 0.05 or less in order to reject. 
 

 As for all of the sample statistics discussed so far, a confidence interval may be constructed.  In the case of 

the Fisher's z transformation of the correlation, we first construct our interval using the z-transformed scores and 

then obtain the anti-log to express the interval in terms of product-moment correlations.  For example, the 90% 

Confidence Interval for the above data is obtained as: 

 

     CI90 = zr ± 1.645(S  )        (4.48) 

                                     zr 

 

          = .693 ± 1.645(.146) = .693 ± 0.24 
 

          = (.453, .933) 
 

and transforming the zr intervals to r intervals gives 

 

     CI90 = (0.424, 0.732)        (4.49) 

 

We converted the zr values back to correlations using 

 

 

             2zr 

               e    -  1 

       r  =  --------         (4.50) 

                 2zr 

               e    +  1 

 

Notice that the sample value of 0.6 is "captured" in the 90% Confidence Interval, thus verifying our one-tailed 0.05 
test. 

 

 LazStats contains a procedure for completing a z test for data like that presented above. 
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Under the Statistics menu, move your mouse down to the Comparisons sub-menu, and then to the option entitled 

“One Sample Tests”.  When the form below displays, click on the Correlation button and enter the sample value .5, 

the population value .6, and the sample size 50.  Change the confidence level to 90.0%. 

 

Fig. 4.8   Single Sample Tests Dialog Form 

 

Shown below is the z-test for the above data: 
 

ANALYSIS OF A SAMPLE CORRELATION 

 

Sample Correlation =  0.600 

Population Correlation =  0.500 

Sample Size = 50 

z Transform of sample correlation =  0.693 

z Transform of population correlation =  0.549 

Standard error of transform =  0.146 

z test statistic =  0.986 with probability  0.838 

z value required for rejection =  1.645 

Confidence Interval for sample correlation = ( 0.425, 0.732) 

 

Testing Equality of Correlations in Two Populations 
 
 When two populations have been sampled, a correlation between X and Y scores of each sample are often 
obtained.  We may test the hypothesis that the product-moment correlation in the two populations are equal.  If we 
assume the samples are independent, our test statistic may be obtained as 
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       (3.59)

 

 

where 

 

 
3

1

3

1

21
21 





nn

S
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      (3.60)

 

 

 

 As an example, assume we have collected ACT Composite scores (a college aptitude test) and College 
Freshman Grade Point Average (GPA) scores for both men and women at a state university.  We might hypothesize 
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that in the population of men and women at this university, there is no difference between the correlation of GPA 
and ACT.  Now pretend that a sample of 30 men yielded a correlation of .5 and that a sample of 40 women yielded a 
correlation of .6.  Our test would yield: 
 

          zr = 0.5493061 for the men, 

 

          zr = 0.6931472 for the women, and 

 

  253108798.0
37

1

27

1
21

 rr zzS
     (3.61)

 

 

and the test value of 
 

          z  =  (0.5493061 - 0.6931472) / 0.253108798 
 

             =  -0.568 
 

which would not be significant.   
 The above test reflects the use of Fisher’s log transformation of a correlation coefficient to an approximate 

z score.  The correlations in each sample are converted to z’s and a test of the difference between the z scores is 

performed.  In this case, the difference obtained had a relatively large chance of occurrence when the null hypothesis 

is true (0.285) and the 95% confidence limit brackets the sample difference of 0.253.  The Fisher z transformation of 

a correlation coefficient is 
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        (3.62)

 

 

 The test statistic for the difference between the two correlations is: 
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       (3.63)

 

 

where the denominator is the standard error of difference between two independent transformed correlations: 
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       (3.64)

 

 

The confidence interval is constructed for the difference between the obtained z scores and the interval limits are 

then translated back to correlations.  The confidence limit for the z scores is obtained as: 

 

   
2121 %% /

rr zzrr zzzCI  
     (3.65)

 

 

We can then translate the obtained upper and lower z values using: 
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         (3.66)

 

 

 For the test that two dependent correlations do not differ from zero we use the following t-test: 

 



Statistics and Measurement Concepts for LazStats   William G. Miller ©2012 

 

 107 

    

 yzxzxyyzxzxy

yzxzxy

rrrrrr

rnrr
t

212

13

222 




      (3.67)

 

 
We would therefore conclude that, in the populations sampled, there is not a significant difference between the 
correlations for men and women.  Using LazStats to accomplish the above calculations is rather easy.  Under the 
Statistics menu move to the Comparisons sub-menu and further in that menu to the Two-Sample Tests sub-sub-
menu.  Click on the Independent Correlations option.  Shown below are the results for the above data: 
 
COMPARISON OF TWO CORRELATIONS 

 

Correlation one =  0.500 

Sample size one = 30 

Correlation two =  0.600 

Sample size two = 40 

Difference between correlations = -0.100 

Confidence level selected = 95.0 

z for Correlation One =  0.549 

z for Correlation Two =  0.693 

z difference = -0.144 

Standard error of difference =  0.253 

z test statistic = -0.568 

Probability > |z| =  0.715 

z Required for significance =  1.960 

Note: above is a two-tailed test. 

Confidence Limits = (-0.565, 0.338) 

 

Differences Between Correlations in Dependent Samples 

 

 Assume that three variables are available for a population of subjects.  For example, you may have ACT 

scores, Freshman GPA (FGPA) scores and High School GPA (HSGPA) scores.  It may be of interest to know 

whether the correlation of ACT scores with High School GPA is equal to the correlation of ACT scores with the 

Freshman GPA obtained in College.  Since the correlations would be obtained across the same subjects, we have 

dependency between the correlations.  In other words, to test the hypothesis that the two correlations rxy and rxz are 

equal, we must take into consideration the correlation ryz .  A t-test with degrees of freedom equal to N-3 may be 

obtained to test the hypothesis that xy = xz in the population.  Our t-test is constructed as 
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     (3.68)

 

 
Assume we have drawn a sample of 50 college freshman and observed: 
 
 rxy = .4 for the correlation of ACT and FGPA, and 

 

 rxz = .6 for the correlation of ACT and HSGPA, and 

 

            ryz = .7 for the correlation of FGPA and HSGPA. 

 

Then for the hypothesis that xy = xz in the population of students sampled, we have 
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 (3.69)

 

 

 

 This sample t value has a two-tailed probability of less than 0.05.  If the 0.05 level were used for our 
decision process, we would reject the hypothesis of equal correlations of ACT with the high school GPA and the 
freshman college GPA.  It would appear that the correlation of the ACT with high school GPA is greater than with 
College GPA in the population studied. 
 

 Again, LazStats provides the computations for the difference between dependent correlations as shown in 

the Fig. below: 

Fig. 4.9   Form for Comparison of Correlations 

 

COMPARISON OF TWO CORRELATIONS 

 

Correlation x with y =  0.400 

Correlation x with z =  0.600 

Correlation y with z =  0.700 

Sample size = 50 

Confidence Level Selected = 95.0 

Difference r(x,y) - r(x,z) = -0.200 

t test statistic = -2.214 

Probability > |t| =  0.032 

t value for significance =  2.012 
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Partial and Semi-Partial Correlations 

Partial Correlation  

 

     One is often interested in knowing what the product-moment correlation would be between two variables if one 

or more related variables could be held constant.  For example, in one of our previous examples, we may be curious 

to know what the correlation between achievements in learning French is with past achievement in learning English 

with intelligence held constant.  In other words, if that proportion of variance shared by both French and English 

learning with IQ is removed, what is the remaining variance shared by English and French? 

 

 When one subtracts the contribution of a variable, say, X3, from both variables of a correlation say, X1 and 

X2, we call the result the partial correlation of X1 with X2 partialling out X3.  Symbolically this is written as r12.3 and 

may be computed by 

 

  2
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231312
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11 rr
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       (3.70)

 

 

 More than one variable may be partialled from two variables.  For example, we may wish to know the 

correlation between English and French achievement partialling both IQ and previous Grade Point Average.  A 

general formula for multiple partial correlation is given by 

 

 

              (1.0 - R
2

y.34 .. k) - (1.0 - R
2

y.12 .. k) 

r12.34..k = _________________________      (3.71) 

                         1.0 - R
2
y.34 .. k 

 

Semi-Partial Correlation 

 

 It is not necessary to partial out the variance of a third variable from both variables of a correlation.  It may 

be the interest of the researcher to partial a third variable from only one of the other variables.  For example, the 

researcher in our previous example may feel that intelligence should be left in the variance of the past English 

achievement which has occurred over a period of years but should be removed from the French achievement which 

is a much short learning experience.  When the variance of a third variable is partialled from only one of the 

variables in a correlation, we call the result a semi-partial or part correlation.  The symbol and calculation of the part 

correlation is  

 

                   r1,2 - r1,3r2,3 

r1(2.3) = ______________ 

                 √(1.0 - r
2

23)        (3.72) 

 

          where X3 is partialled only from X2 . 

 

 

 The squared multiple correlation coefficient R
2
 may also be expressed in terms of semi_partial correlations.  

For example, we may write the equation 

 

R
2
y.1 2 .. k = r

2
y.1 + r

2
y(2.1) + r

2
y(3.12) + .. +  r

2
y(k.12..k-1)     (3.73) 
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In this formula, each semi-partial correlation reflects the proportion of variance contributed by a variable 

independent of previous variables already entered in the equation.  However, the order of entry is important.  Any 

given variable may explain a different proportion of variance of the independent variable when entered first, say, 

rather than last! 

 

 The semi-partial correlation of two variables in which the effects of K-1 other variables have been partialed 

from the second variable may be obtained by multiple regression.  That is 

 

r
2

y(1.2 3 .. k) = R2y.1 2 .. k - R
2
y.23..k       (3.74) 

 

 

Autocorrelation 

 

 A large number of measurements are collected over a period of time.  Stock prices, quantities sold, student 

enrollments, grade point averages, etc. may vary systematically across time periods.  Variations may reflect trends 

which repeat by week, month or year.  For example, a grocery item may sell at a fairly steady rate on Tuesday 

through Thursday but increase or decrease on Friday, Saturday, Sunday and Monday.  If we were examining product 

sales variations for a product across the days of a year, we might calculate the correlation between units sold over 

consecutive days.  The data might be recorded simply as a series such as “units sold” each day.  The observations 

can be recorded across the columns of a grid or as a column of data in a grid.  As an example, the grid might 

contain: 

 

 CASE/VAR Day Sold 

 Case 1  1 34 

 Case 2  2 26 

 Case 3  3 32 

 Case 4  4 39 

 Case 5  5 29 

 Case 6  6 14 

... 

 Case 216 6 15 

 Case 217 7 12 

 

If we were to copy the data in the above “Sold” column into an adjacent column but starting with the Case 2 data, 

we would end up with: 

 

 CASE/VAR Day Sold Sold2 

Case 1  1 34 26 

Case 2  2 26 32 

Case 3  3 32 39 

Case 4  4 39 29 

Case 5  5 29 14 

Case 6  6 14 11 

... 

Case 216  6 15 12 

Case 217  7 12 - 

 

In other words, we repeat our original scores from Case 2 through case 217 in the second column but moved up one 

row.  Of course, we now have one fewer case with complete data in the second column.  We say that the second 

column of data “lags” the first column by 1.   In a similar fashion we might create a third, fourth, fifth, etc. column 

representing lags of 2, 3, 4, 5, etc..  Creating lag variables 1 through 6 would result in variables starting with sales on 

days 1 through 7, that is, a week of sale data.  If we obtain the product-moment correlations for these seven 
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variables, we would have the correlations among Monday sales, Tuesday Sales, Wednesday Sales, etc.  We note that 

the mean and variance are best estimated by the lag 0 (first column) data since it contains all of the observations 

(each lag loses one additional observation.)  If the sales from day to day represent “noise” or simply random 

variations then we would expect the correlations to be close to zero.  If, on the other hand, we see an systematic 

increase or decrease in sales between say, Monday and Tuesday, then we would observe a positive or negative 

correlation. 

 

 In addition to the inter-correlations among the lagged variables, we would likely want to plot the average 

sales for each.  Of course, these averages may reflect simply random variation from day to day.  We may want to 

“smooth” these averages to enhance our ability to discern possible trends.  For example, we might want the average 

of day three to be a weighted average of that day plus the previous two day sales.  This “moving average” would 

tend to smooth random peaks and valleys that occur from day to day. 

 

 It is also the case that an investigator may want to predict the sales for a particular day based on the 

previous sales history.  For example, we may want to predict day 8 sales given the history of previous seven day 

sales. 

 

 Now let us look at an example of auto-correlation.  We will use a file named strikes.tab.  The file contains a 

column of values representing the number of strikes which occurred each month over a 30 month period.  Select the 

auto-correlation procedure from the Correlations sub-menu of the Statistics main menu.  Below is a representation of 

the form as completed to obtain auto-correlations, partial auto-correlations, and data smoothing using both moving 

average smoothing and polynomial regression smoothing: 

 

 

Fig. 4.10   The Autocorrelation Dialog 

When we click the Compute button, we first obtain a dialog form for setting the parameters of our moving average. 

In that form we first enter the number of values to include in the average from both sides of the current average 

value.  We selected 2.  Be sure and press the Enter key after entering the order value.  When you do, two theta 

values will appear in a list box.  When you click on each of those thetas, you will see a default value appear in a text 
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box.  This is the weight to assign the leading and trailing averages (first or second in our example.)  In our example 

we have accepted the default value for both thetas (simply press the Return key to accept the default or enter a value 

and press the Return key.)  Now press the Apply button.  When you do this, the weights for all of the values (the 

current mean and the 1, 2, … order means) are recalculated.  You can then press the OK button to proceed with the 

process. 

 

Fig. 4.11   The Moving Average Dialog 

 

The procedure then plots the original (30) data points and their moving average smoothed values.  Since we also 

asked for a projection of 5 points, they too are plotted.  The plot should look like that shown below: 

 

Fig. 4.12   Plot of Smoothed Points Using Moving Averages 
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We notice that there seems to be a “wave” type of trend with a half-cycle of about 15 months.  When we press the 

Return button on the plot of points we next get the following: 

 

Fig. 4.13   Plot of Residuals Obtained Using Moving Averages 

 

This plot shows the original points and the difference (residual) of the smoothed values from the original.  At this 

point, the procedure replaces the original points with the smoothed values.  Press the Return button and you next 

obtain the following: 

 

Fig. 4.14   Polynomial Regression Smoothing Form 

 

This is the form for specifying our next smoothing choice, the polynomial regression smoothing.  We have elected 

to use a polynomial value of 2 which will result in a model for a data point Yt-1 = B * t
2
 + C for each data point.  

Click the OK button to proceed.  You then obtain the following result: 
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Fig. 4.15   Plot of Polynomial Smoothed Points 

 

It appears that the use of the second order polynomial has “removed” the cyclic trend we saw in the previously 

smoothed data points.  Click the return key to obtain the next output as shown below: 

 

 

Fig. 4.16   Plot of Residuals from Polynomial Smoothing 

This result shows the previously smoothed data points and the residuals obtained by subtracting the polynomial 

smoothed points from those previous points.  Click the Return key again to see the next output shown below: 
 
Overall mean = 4532.604, variance = 11487.241 

Lag      Rxy      MeanX     MeanY    Std.Dev.X Std.Dev.Y    Cases     LCL       UCL 

 

   0    1.0000 4532.6037 4532.6037  109.0108  109.0108        30    1.0000    1.0000 

   1    0.8979 4525.1922 4537.3814  102.9611  107.6964        29    0.7948    0.9507 

   2    0.7964 4517.9688 4542.3472   97.0795  106.2379        28    0.6116    0.8988 

   3    0.6958 4510.9335 4547.5011   91.3660  104.6337        27    0.4478    0.8444 

   4    0.5967 4504.0864 4552.8432   85.8206  102.8825        26    0.3012    0.7877 

   5    0.4996 4497.4274 4558.3734   80.4432  100.9829        25    0.1700    0.7287 

   6    0.4050 4490.9565 4564.0917   75.2340   98.9337        24    0.0524    0.6679 

   7    0.3134 4484.6738 4569.9982   70.1928   96.7340        23   -0.0528    0.6053 

   8    0.2252 4478.5792 4576.0928   65.3196   94.3825        22   -0.1470    0.5416 

   9    0.1410 4472.6727 4582.3755   60.6144   91.8784        21   -0.2310    0.4770 

  10    0.0611 4466.9544 4588.8464   56.0772   89.2207        20   -0.3059    0.4123 

  11   -0.0139 4461.4242 4595.5054   51.7079   86.4087        19   -0.3723    0.3481 

  12   -0.0836 4456.0821 4602.3525   47.5065   83.4415        18   -0.4309    0.2852 
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In the output above we are shown the auto-correlations obtained between the values at lag 0 and those at lags 1 

through 12.  The procedure limited the number of lags automatically to insure a sufficient number of cases upon 

which to base the correlations.  You can see that the upper and lower 95% confidence limits increases as the number 

of cases decreases.   Click the Return button on the output form to continue the process.  

 
Matrix of Lagged Variable: VAR00001 with   30 valid cases. 

 

 

Variables 

                  Lag 0        Lag 1        Lag 2        Lag 3        Lag 4 

     Lag 0       1.000        0.898        0.796        0.696        0.597  

     Lag 1       0.898        1.000        0.898        0.796        0.696  

     Lag 2       0.796        0.898        1.000        0.898        0.796  

     Lag 3       0.696        0.796        0.898        1.000        0.898  

     Lag 4       0.597        0.696        0.796        0.898        1.000  

     Lag 5       0.500        0.597        0.696        0.796        0.898  

     Lag 6       0.405        0.500        0.597        0.696        0.796  

     Lag 7       0.313        0.405        0.500        0.597        0.696  

     Lag 8       0.225        0.313        0.405        0.500        0.597  

     Lag 9       0.141        0.225        0.313        0.405        0.500  

    Lag 10       0.061        0.141        0.225        0.313        0.405  

    Lag 11      -0.014        0.061        0.141        0.225        0.313  

    Lag 12      -0.084       -0.014        0.061        0.141        0.225  

 

 

Variables 

                  Lag 5        Lag 6        Lag 7        Lag 8        Lag 9 

     Lag 0       0.500        0.405        0.313        0.225        0.141  

     Lag 1       0.597        0.500        0.405        0.313        0.225  

     Lag 2       0.696        0.597        0.500        0.405        0.313  

     Lag 3       0.796        0.696        0.597        0.500        0.405  

     Lag 4       0.898        0.796        0.696        0.597        0.500  

     Lag 5       1.000        0.898        0.796        0.696        0.597  

     Lag 6       0.898        1.000        0.898        0.796        0.696  

     Lag 7       0.796        0.898        1.000        0.898        0.796  

     Lag 8       0.696        0.796        0.898        1.000        0.898  

     Lag 9       0.597        0.696        0.796        0.898        1.000  

    Lag 10       0.500        0.597        0.696        0.796        0.898  

    Lag 11       0.405        0.500        0.597        0.696        0.796  

    Lag 12       0.313        0.405        0.500        0.597        0.696  

 

 

Variables 

                 Lag 10       Lag 11       Lag 12 

     Lag 0       0.061       -0.014       -0.084  

     Lag 1       0.141        0.061       -0.014  

     Lag 2       0.225        0.141        0.061  

     Lag 3       0.313        0.225        0.141  

     Lag 4       0.405        0.313        0.225  

     Lag 5       0.500        0.405        0.313  

     Lag 6       0.597        0.500        0.405  

     Lag 7       0.696        0.597        0.500  

     Lag 8       0.796        0.696        0.597  

     Lag 9       0.898        0.796        0.696  

    Lag 10       1.000        0.898        0.796  

    Lag 11       0.898        1.000        0.898  

    Lag 12       0.796        0.898        1.000  
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The above data presents the inter-correlations among the 12 lag variables.  Click the output form’s Return button to 

obtain the next output: 
 

Partial Correlation Coefficients with   30 valid cases. 

 

Variables        Lag 0        Lag 1        Lag 2        Lag 3        Lag 4 

                 1.000        0.898       -0.051       -0.051       -0.052  

 

Variables        Lag 5        Lag 6        Lag 7        Lag 8        Lag 9 

                -0.052       -0.052       -0.052       -0.052       -0.051  

 

Variables       Lag 10       Lag 11 

                -0.051       -0.051  

 

The partial auto-correlation coefficients represent the correlation between lag 0 and each remaining lag with 

previous lag values partialled out.  For example, for lag 2 the correlation of -0.051 represents the correlation 

between lag 0 and lag 2 with lag 1 effects removed.  Since the original correlation was 0.796, removing the effect of 

lag 1 made a considerable impact.  Again click the Return button on the output form.  Next you should see the 

following results: 

 

Fig. 4.17   Auto and Partial Autocorrelation Plot 

This plot or “correlogram” shows the auto-correlations and partial auto-correlations obtained in the analysis.  If only 

“noise” were present, the correlations would vary around zero.  The presence of large values is indicative of trends 

in the data. 

Series 

Introduction 

 

 In many areas of research observations are taken periodically of the same object.  For example, a medical 

researcher may take hourly blood pressure readings of a patient.  An economist may record the price of a given stock 

each day for a long period.  A retailer may record the number of units sold of a particular item on a daily basis.  An 

industrialist may record the number of parts rejected each day over a period of time.  In each of these cases, the 

researcher may be interested in identifying patterns in the fluctuation of the observations.  For example, does a 

patient’s systolic blood pressure systematically increase or decrease during visits by relatives?  Do stock prices tend 

to vary systematically from month to month?  Does the number of cans of tomato soup sold vary systematically 

across the days of the week or the months?  Does the number of parts rejected in the assembly line vary 

systematically with the time of day or day of the week? 
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 One approach often taken to discern patterns in repeated measurements is to simply plot the observed 

values across the time intervals on which the recording took place.  This may work well to identify major patterns in 

the data.  Sometimes however, factors which contribute to large systematic variations may “hide” other patterns that 

exist.  A variety of methods have been developed to identify such patterns.  For example, if the patterns are thought 

to potentially follow a sin wave pattern across time, a Fourier analysis may be used.  This method takes a “signal” 

such as an electrical signal or a series of observations such as units sold each day and attempts to decompose the 

signal into fundamental frequencies.  Knowing the frequencies allows the researcher to identify the “period” of the 

waves.  Another method often employed involves examining the product-moment correlation between observations 

beginning at a specific “lag” period from each other.  For example, the retailer may create an “X” variable beginning 

on a Monday and and “Y” variable beginning on the Monday four weeks later.  The number of units sold are then 

recorded for each of these Mondays, Tuesdays, etc.  If there is a systematic variation in the number of units sold 

over the weeks of this lag, the correlation will tend to be different from zero.  If, on the other hand, there is only 

random variation, the correlation would be expected to be zero.  In fact, the retailer may vary the lag period by 1 

day, 2 days, 3 days, etc. for a large number of possible lag periods.  He or she can then examine the correlations 

obtained for the various lags and where the correlations are larger, determine the pattern(s) that exist.  One can also 

“co-vary out” the previous lag periods (i.e. get partial correlations) to identify whether or not more than one pattern 

may exist. 

 

 Once patterns of variability over time are identified, then observations at future time periods may be 

predicted with greater accuracy than one would obtain by simply using the average of all observations.  The Auto-

Regressive Imbedded Moving Average (ARIMA) method developed by Box and Jenkins is one such prediction tool.  

In that method, the relationship between a set of predictor observations and subsequent observations are optimized 

in a fashion similar to multiple regression or canonical correlation.  When the interest is in predicting only a small 

number of future values, other methods may be employed such as multiple regression, moving average, etc. 

 

 The LazStats program provides the means for obtaining auto-correlations, partial auto-correlations, Fourier 

analysis, moving average analysis and other tools useful for time series analyses. 

 

Calculating Correlations 

Correlation 

The Product Moment Correlation 

 

 It seems most living creatures observe relationships, perhaps as a survival instinct.  We observe signs that 

the weather is changing and prepare ourselves for the winter season.  We observe that when seat belts are worn in 

cars that the number of fatalities in car accidents decrease.  We observe that students that do well in one subject tend 

to perform will in other subjects.  This chapter explores the linear relationship between observed phenomena.   

 

 If we make systematic observations of several phenomena using some scales of measurement to record our 

observations, we can sometimes see the relationship between them by “plotting” the measurements for each pair of 

measures of the observations.  As a hypothetical example, assume you are a commercial artist and produce sketches 

for advertisement campaigns.  The time given to produce each sketch varies widely depending on deadlines 

established by your employer.  Each sketch you produce is ranked by five marketing executives and an average 

ranking produced (rank 1 = best, rank 5 = poorest.)   You suspect there is a relationship between time given (in 

minutes) and the average quality ranking obtained.  You decide to collect some data and observe the following: 

 

Average Rank (Y) Minutes (X) 

3.8 10 

2.6 35 

4.0 5 

1.8 42 

3.0 30 

2.6 32 

2.8 31 
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3.2 26 

3.6 11 

2.8 33 

 

Using LazStats Descriptive menu’s Plot X vs. Y procedure to plot these values yields the scatter-plot shown on the 

following page.  Is there a relationship between the production time and average quality ratings? 

 

Fig. 4.18  X Versus Y Plot 

 

 LazStats contains a procedure for completing a z test for data like that presented above. 

Under the Statistics menu, move your mouse down to the Comparisons sub-menu, and then to the option entitled 

“One Sample Tests”.  When the form below displays, click on the Correlation button and enter the sample value .5, 

the population value .6, and the sample size 50.  Change the confidence level to 90.0%. 

 

 

Fig. 4.19   SingleSample Tests Dialog Form 

 

Shown below is the z-test for the above data: 
 

ANALYSIS OF A SAMPLE CORRELATION 

 

Sample Correlation =  0.600 

Population Correlation =  0.500 
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Sample Size = 50 

z Transform of sample correlation =  0.693 

z Transform of population correlation =  0.549 

Standard error of transform =  0.146 

z test statistic =  0.986 with probability  0.838 

z value required for rejection =  1.645 

Confidence Interval for sample correlation = ( 0.425, 0.732) 

 

 Again, LazStats provides the computations for the difference between dependent correlations as shown in 

the Fig. below: 

Fig. 4.20   Form for Comparison of Correlations 

 

COMPARISON OF TWO CORRELATIONS 

 

Correlation x with y =  0.400 

Correlation x with z =  0.600 

Correlation y with z =  0.700 

Sample size = 50 

Confidence Level Selected = 95.0 

Difference r(x,y) - r(x,z) = -0.200 

t test statistic = -2.214 

Probability > |t| =  0.032 

t value for significance =  2.012 
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Partial and Semi-Partial Correlations 

 

Partial Correlation  

 

     One is often interested in knowing what the product-moment correlation would be between two variables if one 

or more related variables could be held constant.  For example, in one of our previous analyses using the cansas.laz 

file, we may be curious to know what the correlation between jump height is with weight, waist and pulse with chins 

and situps held constant.   

 

 

Fig. 4.21  Form for Partial and Semi-Partial Correlation 

Partial and Semi-Partial Correlation Analysis 

 

Dependent variable = jumps 

 

Predictor Variables: 

Variable 2 = weight 

Variable 3 = waist 

Variable 4 = pulse 

 

Control Variables: 

Variable 2 = chins 

Variable 3 = situps 

 

Higher order partialling at level = 3 

 

Multiple partialling with 2 variables. 

 

Squared Multiple Correlation with all variables =  0.636 

 

Standardized Regression Coefficients: 
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    weight = -0.588 

     waist =  0.982 

     pulse = -0.064 

     chins =  0.201 

    situps =  0.888 

 

Squared Multiple Correlation with control variables =  0.450 

 

Standardized Regression Coefficients: 

     chins =  0.058 

    situps =  0.629 

 

 

Partial Correlation =  0.583 

 

Semi-Partial Correlation =  0.432 

 

F =    2.398 with probability = 0.1117, D.F.1 =   3 and D.F.2 =  14 
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Chapter 5. Multiple Regression 
 

 

 This chapter develops the theory and applications of Multiple Linear Regression Analysis. The multiple 

regression methods are frequently used (and misused.)   It also forms the heart of several other analytic methods 

including Path Analysis, Structural Equation Modeling and Factor Analysis. 

 

The Linear Regression Equation 

 

 One of the major applications in statistics is the prediction of one or more characteristics of individuals on 

the basis of knowledge about related characteristics.  For example, common-sense observation has taught most of us 

that the amount of time we practice learning something is somewhat predictive of how well we perform on that thing 

we are trying to master.  Our bowling score tends to improve (up to a point) in relationship to the amount of time we 

spend practicing bowling.  In the social sciences however, we are often interested in predicting less obvious 

outcomes.  For example, we may be interested in predicting how much a person might be expected to use a 

computer on the basis of a possible relationship between computer usage and other characteristics such as anxiety in 

using machines, mathematics aptitude, spatial visualization skills, etc.  Often we have not even observed the 

relationships but instead must simply hypothesize that a relationship exists.  In addition, we must hypothesize or 

assume the type of relationship between our variables of interest.  Is the relationship a linear one?  Is it a curvilinear 

one? 

 

 Multiple regression analysis is a method for examining the relationship between one continuous variable of 

interest (the dependent or criterion variable) and one or more independent (predictor) variables.  Typically we 

assume a linear relationship of the type 

 

          Yi = B1Xi1 + B2Xi2 + ... + BkXik + B0 + Ei        (5.1) 

 

where 

 

          Yi is the score obtained for individual i on the dependent variable, 

 

          Xi1 ... Xik are scores obtained on k independent variables, 

 

          B1 ... Bk are weights (regression coefficients) of  the k independent variables which 

 maximize the relationship with the Y scores, 

 

          B0 is a constant (intercept) and Ei is the error for individual i. 

 

 

 In the above equation, the error score Ei reflects the difference between the subject's actual score Yi and the 

score which is predicted on the basis of the weighted combination of the independent variables.  That is,  

            

Y'i - Yi  =  Ei .         (5.2) 

 

where Y'i is predicted from 

 

Y'i = B1Xi1 + B2Xi2 + ... + BkXik + B0            (5.3) 

 

 

 In addition to assuming the above general linear model relating the Y scores to the X scores,  we usually 

assume that the
 
Ei scores are normally distributed. 

 

 When we complete a multiple regression analysis, we typically draw a sample from a population of 

subjects and observe the Y and X scores for the subjects of that sample.  We use that sample data to estimate the 

weights (B's) that will permit us the "best" prediction of Y scores for other individuals in the population for which 
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we only have knowledge of their X scores.  For example, assume we are interested in predicting the scores that 

individuals make on a paper and pencil final examination test in a statistics course in graduate college.  We might 

hypothesize that students who, in the past, have achieved higher grade point averages as undergraduates would 

likely do better on a statistics test.  We might also suspect that students with higher mathematics aptitudes as 

measured by the mathematics score on the Graduate Record Examination would do better than students with lower 

scores.  If undergraduate GPA and GRE-Math combined are highly related to achievement on a graduate statistics 

grade, we could use those two variables as predictors of success on the statistics test.  Note that in this example, the 

GRE and undergraduate GPA are obtained for individuals quite some time before they even enroll in the statistics 

course!  To find that weighted combination of GRE and GPA scores which "best" predicts the graduate statistics 

grades of students, we must observe the actual grades obtained by a sample of students that take the statistics course. 

 

 Notice that in our linear prediction model, we are going to obtain, for each individual, a single predictor 

score that is a weighted combination of independent variable scores.  We could, in other words, write our prediction 

equation as 

 

Y'i = Ci + B0               (5.4) 

 

 where 

                   k 

          Ci = Σ BiXI         (5.5) 

                 j=1 

 

 

 You may recognize that equation (3) above is a simple linear equation.  The product-moment correlation 

between Yi and Ci in equation (3) is an index of the degree to which the dependent and composite score are linearly 

related.  In a previous chapter we expressed this relationship with rxy and the proportion of variance shared as r
2

xy.  

When x is replace by a weighted composite score C, we differentiate from the simple product-moment correlation 

by use of a capital r, that is Ry.1,2,..,k with the subscripts after the period indicating the k independent variables.  The 

proportion of variance of the Y scores that is predicted by weighted composite of X scores is, similarly, R
2
y.1,2,..,k . 

 

 We previously learned that, for one independent variable, the "best" weight (B) could be obtained from  

 

 B = rxy Sy / Sx .        (5.6) 

 

We did not, however, demonstrate exactly what was meant by the best fitting line or best B.  We need to learn how 

to calculate the values of B when there is more than one independent variable and to interpret those weights. 

 

 In the situation of one dependent and one independent variable, the regression line is said to be the "best" 

fitting line when the squared distance of each observed Y score summed across all Y scores is a minimum.  The Fig. 

on the following page illustrates the "best fitting" line for the pairs of x and y scores observed for five subjects.  The 

line represents, of course, the equation 

 

Y'i = BXi + B0         (5.7) 

 

That is, the predicted Y value for any value of X.  (See chapter III to review how to obtain B and B0 .)  Since we 

have defined error (Ei) as the difference between the observe dependent variable score (Yi) and the predicted score, 

then our "best fitting" line is drawn such that 

 

      n          n           

     Σ Ei
2
 = Σ (Yi - Y'i)

2
 is a minimum.              (5.8) 

    i=1       i=1 

                                                         

We can substitute our definition of Y'i from equation (4.7) above in equation (4.8) above and obtain 

 

             n 

     G = Σ [Yi - (BXi + B0)]
2
 = a minimum           (5.9) 

           i=1 
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Expanding equation (5.9) yields 

 

        n            n                          n 

G = Σ Yi
2
 + Σ (BXi + B0)

2
 - 2 Σ Yi(BXi + B0)      (5.10) 

      i=1         i=1                   i=1 

 

      n           n                                               n                     n 

  = Σ Yi
2
 + Σ(B

2
Xi

2
 + B0

2
 + 2B0BXi) - 2B Σ YiXi - 2B0 Σ Yi 

    i=1        i=1                                        i=1              i=1 

 

or 

 

        n                n                               n              n                      n 

G = Σ Yi
2
 + B

2
 Σ Xi

2
 + nB0

2
 + 2B0B Σ Xi - 2B Σ YiXi     - 2B0 Σ Yi                          (5.11) 

      i=1             i=1                         i=1          i=1                  i=1 

  

 

    =  a minimum. 

 

 

Notice that the function G is affected by two unknowns, B0 and B.  There is one pair of these values which makes G 

a minimum value _ any other pair would cause G (the sum of squared errors) to be larger.  But how do we determine 

B and B0 that guarantees, for any observed sample of data, a minimum G?  To answer this question requires we 

learn a little bit about minimizing a function.  We will introduce some very elementary concepts of Calculus in order 

to solve for values of B and B0 that minimize the sum of square errors. 

 

Least Squares Calculus 

 

Definitions: 

 

 

Definition 1: A function (f) is a correspondence between the objects of one class and those of another which pairs each member of 

the first class with one and only one member of the second class.  We have several ways of specifying functions, for 

example, we might provide a complete cataloging of all the associated pairs, e.g. 

 

     Class 1 (x)  |  1   2   3   4   5 

     __________________________________ 

     class 2 f(x)  |  3   5   7   9  11 

 

     where class 2 values are a function of class 1 values. 

 

Another way of specifying a function is by means of a set of ordered pairs, e.g. 

 

     { (1,3), (2,5), (3,7), (4,9), (5,11) } 
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We may also use a map or graph such as 

 

     15  | 

     14  | 

     13  | 

     12  | 

     11  |                              * 

     10  | 

      9  |                        * 

      8  | 

      7  |                  * 

      6  | 

      5  |            * 

      4  | 

      3  |      * 

      2  | 

      1  | 

      0  | 

     __________________________________________ 

          0     1     2     3     4     5     6 

Fig. 5.1  A Simple Function Map 

Finally, we may use a mathematical formula: 

 

     f(x) = 2X + 1 where X = 1,2,3,4,5 

 

 

Definition 2: Given a specific member of the first class, say X, the member of the second class corresponding to this first class 

member, designated by f(X), is said to be the value of the function at X. 

 

 

Definition 3: The set of all objects of the first class is said to be the domain of the function.  The set of all objects of the second 

class is the range of the function f(X). 

 

     In our previous example under definition 1, the domain is the set of numbers (1,2,3,4,5) and the range is 

(3,5,7,9,11).  As another example, let X = any real number from 1 to 5 and let f(X) = 2X + 1.  Then the domain is 

 

     { X : 1 < X < 5 } and the range is 

 

     { f(X) : 3 < f(X) < 11 }. 

 

 

Definition 4: The classes of objects or numbers referred to in the previous definitions are sometimes called variables.  The first 

class is called the independent variable and the second class is called the dependent variable.   

 

Definition 5: A quantity which retains a fixed value throughout the course of a discussion is called a constant.  Some constants 

retain the same values in all discussions, e.g. 

 

  = c/d = 3.1416..., and 

 

 e = limit as x   of (1 + X)
1/X

 = 2.7183...  .   

 

Other constants retain the save values in a given discussion but may vary from one discussion to another.  For 

example, consider the function 

 

          f(X) = bX + a.        (5.12) 
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In the example under definition 1, b = 2 and a = 1.  If b = -2 and a = 3 then the function becomes 

 

          f(x) = -2X + 3 . 

 

     If X is continuous or an infinite set, complete listing of the numbers is impossible but a map or formula may be 

used.   Now consider 

 

          X     |  1   2   2   3 

          _____________________ 

          f(X) |  3   5   7   4 

 

 

This is not a legitimate function as by definition there is not a one and only one correspondence of members. 

 

 Sometimes the domain is itself a set of ordered pairs or the sub-set of a plane.  For example 

 
                    f(X,Y) 

                         3  | 

                            | : 

                         2  | : 

                            | : 

                         1  | : 

                            | : 

                         ___|_:____________________ 

                           /  :   1     2     3 

                       1  /   : .     . 

                         /    :.     . 

                     2  /     :     . 

                       / 

                   3  / 

                     / 

 

Fig. 5.2 A Function Map in Three Dimensions 

The domain of { (X,Y) : 0 < X < 2 & 0 < Y < 2 } 

 

               f(X,Y) = 2X + Y + 1 

 

               Range of { 1 < f(X,Y) < 7 } 

 

 

Finding A Change in Y Given a Change in X For Y=f(X) 

                               

 It is often convenient to use Y or some other letter as an abbreviation for f(X). 

 

Definition 6: ΔX represents the amount of change in the value of X and ΔY represents the corresponding amount of change in the 

value of Y = f(X).   ΔX and ΔY are commonly called increments of change or simply increments.  For example, 

consider Y = f(X) = X
2
 where: 

 

     Domain is { X : -∞ < X < +∞ } 

 

Now let X = 5.  Then Y = f(X) = 25.  Now let  ΔX = +2.  Then 

 

 Y = +24.  Or let  ΔX = -2 then  Y = -16.  Finally, 

 

let  ΔX = 1/2 then  Y = 5.25. 
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     Trying a different starting point X = 3 and using the same values of X we would get: 

 

          if  X = 3 

         and  ΔX = +2 then  Y =  +16 

              ΔX = -2 then  Y =   -8 

              ΔX = .5 then  Y = 3.25 

 

 

It is impractical to determine the increment in Y for an increment in X in the above manner for the general function 

Y = f(X) = X
2
.  A more general solution for Y is obtained by writing 

 

          Y +  ΔY = f(X  +  ΔX) = (X  +  ΔX)
2
 

 

or, solving for  Y by subtracting Y from both sides gives 

 

           Y = (X +  ΔX)
2
 – Y        (5.13) 

 

     or    Y = X
2
 + Δ X

2
 + 2X ΔX - Y 

 

     or    Y = X
2
 +  ΔX

2
 + 2X ΔX - X

2
 

 

     or    Y = 2X ΔX +  ΔX
2
 

 

 

Now using this formula: 

 

     If X = 5 and  ΔX = 2 then  Y = +24 or if X = 5 and  ΔX = -2 then  Y = -16.  These values are the same as we 

found by our previous calculations! 

 

Relative Change in Y for a Change in X 

 

 We may express the relative change in a function with respect to a change in X as the ratio 

 

                ΔY 

                 --- 

                ΔX 

 

For the function Y = f(X) = X
2
 we found that  Y = 2X ΔX +  ΔX

2
 

 

Dividing both sides by  ΔX we then obtain 

 

 

 

 

                ΔY 

                ----- = 2X +  ΔX        (5.14) 

                ΔX 

 

For example, when X = 5 and  X = +2, the relative change is 

 

                ΔY       24 

                 ---- =  ---  = 2(5) + 2  =  12 

                ΔX       2 
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The Concept of a Derivative 

 

 We may ask what is the limiting value of the above ratio ( ΔY /  ΔX) of relative change is as the increment 

in X ( ΔX) approaches 0 ( ΔX → 0).  We use the symbol 

 

          dY 

          ----   to represent this limit. 

          dX 

 

We note that for the function Y = X
2
, the relative change was 

 

           ΔY 

            ---  =  2X +  ΔX .        (5.15) 

           ΔX 

 

If  ΔX approaches 0 then the limit is 

 

          dY 

          ----  =  2X . 

          dX 

 

Definition 7: The derivative of a function is the limit of a ratio of the increment of change of the function to the increment of the 

independent variable when the latter increment approaches 0 as a limit.  Symbolically, 

 

 

     dY                  ΔY              f(X +  ΔX)-f(X) 

     --- =       Lim ------  =    Lim ----------------- 

     dX     ΔX→0  ΔX     ΔX→0       ΔX 

 

Since Y +  ΔY = f(X +  ΔX) and Y = f(X) then 

 

      ΔY = f(X +  ΔX) - f(X)  and the ratio 

 

      ΔY       f(X +  ΔX) - f(X) 

       ----  = ----------------------       (5.16) 

      ΔX                ΔX 

 

EXAMPLE:    Y = X
2
   dY/dX = ? 

 

                                   f(X +  ΔX) - f(X) 

          dY/dX = Lim   ---------------------- 

                         ΔX→0          ΔX 

 

                             X
2
 +  ΔX

2
 + 2X ΔX - X

2
 

                = Lim   ----------------------------- 

                  ΔX→0         ΔX 

 

                = Lim   ΔX + 2X 

                  ΔX→0 

 

or        dY 

           ----    =  2X 

          dX 

 

Some Rules for Differentiating Polynomials 
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Rule 1.  If Y = CX
n
 , where n is an integer, then 

 

          dY 

          ---  =  nCX
n-1        

(5.17) 

          dX 

 

     For example, let C = 7 and n = 4 then Y = 7X
4
. 

 

          dY 

          ----  =  (4)(7)X
3
 

          dX 

 

 

Proof: 

 

          dY              C(X +  ΔX)
n
 - CX

n
 

          ---  =    Lim ---------------------- 

          dX     ΔX→0       ΔX 

 

                      n     n    n 

     since (a+b)  =   Σ   ( ) a
r
 b

n_r
 

                           r=0   r 

 

     then 

 

          dY                       n                     n 

          ----  =    Lim   [ C( )X
n
 ΔX

n-n
 + C(   )X

n-1
 ΔX

1
 

          dX     ΔX→0       n                    n-1 

 

 

 

                              b                           b 

                      + C(   )X
n-2

 ΔX
2
 + ...+ C( )X

0
 ΔX

n
 

                            n-2                          0 

 

                      - CX
n
] /  ΔX 

 

                                                               n(n_1) 

              =  Lim [ CX
n
 + C

n
X

n-1
 ΔX + C------- X

n-2
 ΔX

2
 

                 ΔX→0                                     2 

 

                      + ...+ C ΔX
n
 - CX

n
 ] /  ΔX 

 

                                            n(n_1) 

              =  Lim   CnX
n-1

 + -------- X
n-2

 ΔX +...+ C ΔX
n-1

 

                 ΔX→0                    2 

 

or 

          dY 

          ---  =  CnX
n-1

            (End of Proof) 

          dX 

 

Rule 1.a  If Y = CX then dY/dX = C      (5.18) 

 

     since by Rule 1 dY/dX = (1)CX
0
 = C 

 

Rule 1.b  If Y = C then dY/dX = 0 
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     Note that dY/dX of CX
0
 is (0)CX

-1
 = 0. 

 

Rule 2.  If Y = U + V - W where U, V and W are functions of 

X, then: 

 

          dY     dU       dV      dW 

          ---  = ----   +  ---   -  ----       (5.19) 

          dX     dX      dX       dX 

 

     Example:  Consider Y = 4X
2
 - 4X + 1 

               Let U = f(X) = 4X
2
 and 

                   V = f(X) = -4X and 

                   W = f(X) = 1. 

 

     Applying Rules 1 and 2 we have 

 

          dY 

          ---  =  8X - 4 

          dX 

 

Rule 3.  If U = V
n
 where V is a function of X then 

 

          dY                dU 

          ---  =  nV
n-1

   ---        (5.20) 

          dX                dX 

 

     Example:  Consider Y = (2X - 1)
2
 

 

               Let V = (2X - 1) and n = 2 

     Then 

 

          dY 

          ---  =  2(2X - 1)(2)  =  8X - 4 

          dX 

 

                                            N 

Another Example.  Let Y =Σ (3X + Wi)
2
 

                                           i=1 

 

               where Wi and N are variable constants, 

 

               that is, in one discussion N1 = 3 and 

 

               W1 = 2 or W2 = 4 and W3 = 3. 

 

     If, for example, X = 0, Y = 2
2
 + 4

2
 + 3

2
 = 29 

 

     or, if X = 1 then Y = 5
2
 + 7

2
 + 6

2
 = 110 

 

     Now we ask, dY / dX = ? 

 

     Solution: 

 

               dY     N 

               ---  =  Σ 2(3X + Wi)(3) 

               dX    i=1 

 

     because    Y = (3X + W1)
2
 + (3X + W2)

2
 + (3X + W3)

2
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     and applying Rules 2 and 3 we get: 

          dY       N 

          ---  =  6 Σ (3X + Wi) 

          dX      i=1 

 

 

                     N            N 

              =  6 Σ 3X + 6 Σ Wi 

                    i=1         i=1 

 

                                      N 

              =  6[N(3X)] + 6 Σ Wi 

                                     i=1 

 

     or 

 

          dY                     N 

          ---  =  18NX + 6 Σ Wi 

          dX                    i=1 

Geometric Interpretation of a Derivative 

 

 The Fig.  below presents a graphical representation of a function Y = f(X) (the curved line).  Two points on 

the function are denoted as P(X,Y) and P(X +  X,Y +  Y).  A straight line, a secant line, is drawn through the two 

points.  Notice that if  X becomes smaller (and therefore the corresponding  Y becomes smaller) that the secant line 

approaches a tangent line at the point P(X,Y).  We review: 

 

          f(X) = Y 

 

          f(X +  ΔX) = (Y +  ΔY)  or f(X +  ΔX) - f(X) =  Y 

 

                f(X +  ΔX) - f(X)     ΔY 

     and    ----------------------  =  ---- 

                 ΔX                        ΔX 

 

Note that  ΔY /  ΔX give rise over run or the slope of the of the secant line through two points on the function.  Now 

if  X → 0, then P' approaches P and the secant line approaches a tangent at the point P.  Therefore the dY / dX is the 

slope of the tangent at P or X. 

 

 We will now use the derivative in determining maximum points on a function. 

 

Finding the Value of X for Which f(X) is Least. 

 

 Given the function f(X) = Y = X
2
 - 3X where -  < X < +  we may present the function as in Fig. XII.2 

below. 

 

 For the function, we may obtain some values of Y corresponding to a selected set of X values: 

 

     X  |  -2    -1     0    +1    +2    +3    +4    +5 

     __________________________________________________ 

     Y  |  10     4     0    -2     -2      0     +4   +10 

 

Then the derivative 

     dY 

     ---  =  2X - 3 which is the slope of the tangent at any point X. 



Statistics and Measurement Concepts for LazStats   William G. Miller ©2012 

 

 132 

     dX 

 

Setting the slope (dY / dX) equal to zero we obtain the minimum value of X, that is, 

 

     0 = 2X - 3  and therefore  X = 1.5 for a minimum Y value. 

 

 

Another Example of a Minimum 

                               

 Given a collection of score values X 

 

               { X | 16, 8, 10, 4, 12 } 

 

we ask for what value of A is f(A) a minimum if 

 

                           5 

               f(A) = Σ (Xi - A)
2
  ? 

                          i=1 

 

 

First, examine the f(A) for various values of A, for example: 

 

     if A = 5 then f(A) = 11
2
 + 3

2
 + 5

2
 + (-1)

2
 + 72 

     if A = 7 then f(A) = 9
2
 + 1

2
 + 3

2
 + (-3)

2
 + 52 

     if A = 8 then f(A) = 8
2
 + 0

2
 + 2

2
 + (-4)

2
 + 42 

     etc. 

 

 

A plot of the function f(A) is presented  below for the values 

 

     A     |     5     7     8    9  11   13   15 

     ------------------------------------------- 

     f(A) | 205 125 100  85  85 125 205 

 

_____________________________________________________________________________________________ 

f(A) 

------ 

210|                                •                                                                      •  

200|                                               

190| 

180| 

170| 

160| 

150| 

140| 

130|                                               •                            •             • 

120| 

110| 

100|                                                       • 

  90|                                                              • 

  80|                                                                  ------- (minimum) 

 

     0     1     2     3     4     5     6     7     8     9     10   11   12   13   14   15 

                                                                A 

Fig. 5.3 The Minimum of a Function Derivative 

     The derivative of the f(A) with respect to A is 
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          d f(A)        5 

          -------     =  Σ 2(Xi - A)(-1)       (5.21) 

           dA          i=1 

 

and to obtain the minimum slope point we obtain 

 

             5                     5 

     0  =  Σ -2(Xi - A)  = Σ Xi - 5A       (5.22) 

            i=1                 i=1 

 

             5 

or   A = Σ Xi / 5 

           i=1 

 

Therefore A = (16 + 8 + 10 + 4 + 12) / 5 = 10 

 

and f(A) = 80 is a minimum. 

 

 

A Generalization of the Last Example 

 

 We will use derivation to prove that given any collection of X values X1, X2, ..., Xi, ..., XN that 

 

                 N                                          _ 

          Y = Σ (Xi - A)
2
 is least when A = X. 

                i=1 

 

As before, the derivative of Y with respect to A is 

 

 

 

 

     dY     N                             N 

     ---  =  Σ 2(Xi - A)(-1)  =  -2 Σ (Xi) - 2NA(-1) 

     dA    i=1                           i=1 

 

Therefore if we set the derivative to zero we obtain 

 

               N 

     0 = -2 Σ Xi + 2NA 

              i=1 

 

              N 

or   0 = - Σ Xi + NA 

             i=1 

 

              N                                             

then A = Σ Xi / N         (5.23) 

                                    _ 

which by definition is X. 

             i=1 

 

Partial Derivatives 

 

 Given a function in two independent variables: 
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          Y = f(X,Z) 

 

we may create a graph as shown if Fig. XII.4 below.  Y, the function, is shown as the vertical axis and X and Z are 

shown as horizontal axis.  Note the line in the Fig. which represents the map of f(X,Z) when one considers only one 

value of Z. 

 

 When we study functions of this type with one variable treated as a constant, the derivative of the function 

is called a partial derivative. 

 

 Suppose the function has a minimum and that it occurs at X = A and Z = B, that is, f(A,B) is a minimum 

value of Y.  We may obtain the derivative of Y = f(A,Z), that is, treat Z as a constant.  This would be the partial 

derivative δY/δZ and may be set equal to 0 to get the minimum at B.  Of course, we don't know A.  Likewise, Y = 

f(X,B) and δY/δX set equal to 0 will give A.  Here we don't know B. 

 

 We can however, by simultaneous equations, where A and B are set to 0, find a minimum of X and Z to 

give the Y minimum. 

 

     For example, let Y = f(X,Z) = X
2
 + XZ + Z

2
 - 6X + 2 . 

 

Then 

 

          δY 

          ---- =  2X + Z - 6  =  0         (1) 

          δX 

 

and    δY 

          --- =  X + 2Z  = 0              (2) 

          δZ 

 

     or X = -2Z for equation (2) and substituting in (1) gives 

          -4Z + Z = 6  or Z = -2 

 

and therefore X = +4.  These values of Z and X are the values of A and B to produce a minimum for Y = f(A,B). 

 

Least Squares Regression for Two or More Independent Variables 

 

 In this section we want to use the concepts of partial derivation to obtain solutions to the B values in 

      

     Y'i = B1Xi,1 + B2Xi,2 + B0       (5.24) 

  

                                           

such that the sum of (Y - Y')
2
 is a minimum. 

 

 As an example, assume we have a situation in which values of Yi represent Grade Point Average (GPA) 

score of subject (i)  in his or her freshman year at college.  Assume that the Xi,1 score is the  high school GPA and 

that the Xi,2 is an aptitude test score.  Our population of subjects may be "decomposed" into sub-populations of Y 

scores that correspond to given values of X1 and X2.  Fig. XII.5 depicts the distributions of Y scores for 

combinations of X1 and X2 scores.  We will assume: 

 

 (1)  the experience pool of the available data is a random sample of (Y, X1 and X2) triplets from a universe 

of such triplets, 

 

 (2)  the universe is capable of decomposition into sub-universes of triplets have like X1 and X2 values but 

differing in Y values, 
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 (3)  the Y means for the sub-universes fall on a plane, that is, 

 

     μY,12 = β1X1 + β2X2 + β0                        (5.25) 

 

Now we use the data to estimate β1 , β2 and β0 by finding those values of B1 and B2 and B0 in: 

       

     Y' = B1X1 + B2X2 + B0                           (5.26) 

 

which minimize 

             N           

     G = Σ (Yi - Y'i)
2
 

            i=1 

 

              N 

or   G = Σ [ Yi - (B1Xi,1 + B2Xi,2 + B0)]
2
          (5.27) 

            i=1 

 

The steps to our solution are: 

 

1.   Find the partial derivatives and equate them to 0. 

 

     δG          N 

     ----  =  2 Σ [Yi - (B1Xi,1 + B2Xi,2 + B0)](-Xi,1) 

     δB1       i=1 

 

 

     δG           N 

     -----  =  2 Σ [Yi - (B1Xi,1 + B2Xi,2 + B0)](-Xi,2) 

     δB2         i=1 

 

     δG          N 

     ----  =  2 Σ [Yi - (B1Xi,1 + B2Xi,2 + B0)](-1) 

     δB0       i=1 

 

Now equating to 0 and simplifying results in the following three "normal" equations: 

 

     N                  N                N                    N 

     Σ YiXi,1 = B1 Σ X
2
i,1 + B2 Σ Xi,1Xi,2 + B0 Σ Xi,1       (5.28) 

     i=1               i=1              i=1                  i=1 

 

      N                 N                    N                 N 

      Σ YiXi,2 = B1 Σ Xi,1Xi,2 + B2 Σ X
2
i,2 + B0 Σ Xi,2       (5.29) 

     i=1                i=1                 i=1              i=1 

 

 

      N            N               N 

      Σ Yi = B1 Σ Xi,1 + B2 Σ Xi,2 + NB0                      (5.30) 

     i=1           i=1            i=1 

 

 

2.   Use the data to obtain the various sums, sums of squared values, and sums of products needed.  Substitute them 

in the above equations (4.28), (4.29) and (4.30) and solve the equations simultaneously for B1, B2 and B0. 

 

3.   Substitute obtained values of B1, B2 and B0 into equation 4.27 to get the regression equation. 

 

4.   If an index of accuracy of prediction is desired, calculate 
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                                                   N  

                                                   Σ y'
2

i 

      N                                         i=1 

     Σ  y'
2
i and obtain  R

2
y.12 =     -------                   (5.31) 

     i=1                                        N 

                                                  Σ y
2

i 

                                                 i=1 

                       

     where the y'i and yi scores are deviations from the mean Y value. 

 

Matrix Form for Normal Equations Using Raw Scores 

 

 Equations (4), (5) and (6) above may be written more conveniently in matrix form as: 

 

      N            N           N 

     [Σ YiXi,1  Σ YiXi,2  Σ Yi ]  = 

      i=1        i=1         i=1 

 

                                N            N           N       

                             |  Σ X
2

i,1     ΣXi,1Xi,2  Σ Xi,1        | 

                             | i=1          i=1           i=1        | 

                             |                                              | 

                             |  N            N           N            | 

     [B1 B2 B0]        |  Σ Xi,1Xi,2  Σ X
2
i,2    Σ Xi,2    | 

                             | i=1           i=1        i=1          | 

                             |                                              | 

                             |  N            N                          | 

                             |  Σ Xi,1      Σ Xi,2     N            | 

                             | i=1          i=1                        | 

              

or  [ Y'X ]1x (K+1) = [ B ]'1 x (K+1) [ X'X ](K+1)(K+1) 

 

and leaving off the sizes of the matrices gives simply 

 

          [ Y'X ] = [ B ]' [ X'X] . 

 

If we post-multiply both sides of this equation by [X'X]
-1

 we obtain 

 

          [ Y'X ] [X'X]-1 = [ B ]'                          (5.32) 

 

     We note that B0 may also be obtained from 

                  _         _                 _ 

          B0 = Y - (B1X1 + ... + BkXk)                       (5.33) 

 

or in matrix notation 

                  _           _ 

          B0 = Y - [B]'[X]        (5.34) 

                 _ 

     where [X] = (1/N) [X] 

 

Matrix Form for Normal Equations Using Deviation Scores 

 

 The prediction (regression) equation above may be written in deviation score form as 
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     y'  =  B1xi,1 + B2xi,2        (5.35) 

 

 

                           N        

and solve for G = Σ (yi - y'i)
2
 as a minimum. 

                         i=1 

 

In deviation score form there is no B0 since the means of deviation scores are always 0. 

 

 

 The partial derivatives of G with respect to B1 and B2 may be written as follows: 

 

        δG                δG 

with ---- = 0 and ----- = 0 we obtain 

       δB1               δB2 

 

            N                 N               N 

       B1 Σ x
2

i,1    + B2 Σ xi,1xi,2  =  Σ yixi,1 

           i=1               i=1            i=1 

and 

 

            N                 N               N 

       B1 Σ xi,1xi,2 + B2 Σ x
2

i,2     =  Σ yixi,2 

           i=1               i=1             i=1 

 

or in matrix notation 

 

                           N        N          

                        |  Σ x
2

i,1  Σ xi,1xi,2    | 

                        | i=1      i=1           | 

      [ B1  B2 ]    |                            | 

                        | N           N           | 

                        | Σ xi,1xi,2  Σ x
2
i,2    | 

                        | i=1        i=1         | 

                  

 

                     N          N 

               = [ Σ yixi,1  Σ yixi,2  ] 

                    i=1        i=1 

 

or simply 

 

               [ B ]' [ x'x ]  =  [y'x]' 

 

and 

               [ B ]' = [y'x]' [x'x]
_1

                      (5.36) 

 

 

Matrix Form for Normal Equations Using Standardardized Scores 

 

 

 The regression equation from above may be written in terms of standardized (z) scores as 
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     z'y  =  β1z1 +β2z2        (5.37) 

 

                                                              N         

The function to be minimized is  G  =  Σ (zy - z'y)
2
 . 

                                                              i=1 

 

 

We obtain the partial derivatives of G with respect to β1 and β2 as before and set them to zero.  The equations 

obtained are then 

 

 

              N             N             N 

          β1 Σ z
2

1 + β2 Σ z1z2  =  Σ zyz1 

              i=1          i=1          i=1 

 

 

 

                 N             N           N 

and       β1 Σ z1z2 + β2 Σ z
2

2  =  Σ zyz2 

                i=1            i=1        i=1 

 

 

If we divide both sides of the above equations by N we obtain 

 

          β1     +    β2r1,2    = ry,1 

 

          β1r1,2 +    β2        = ry,2 

 

or  

 

                             |  1    r1,2  | 

 [ β1 β2 ]     |              |   = [ ry,1  ry,2 ] 

                             | r1,2     1  | 

 

 

or more simply as 

 

          [β ]' [ rxx ] =  [ ry,x ]' 

 

and therefore 

 

          [β ]' = [ ry,x ]' [ rx,x ]
-1

                     (5.38) 

 

 Equations in the previous discussion are general forms for solving the regression coefficients B1,...,Bk+1 in 

raw score form, the B1,...,Bk coefficients in deviation score form or the 1,...,k coefficients in standardized score 

form.  In each case, the B's or Betas are obtained by multiplication of an inverse matrix times the vector of cross-

products or correlations.  When there are more than two independent variables, the inverse of the matrix becomes 

laborious to obtain by hand.  Computers are generally available however, which makes the chore of obtaining an 

inverse much easier.   

 

 You should remember that the independent variables must, in fact, be independent.  That is, one 

independent variable cannot be a sum of one or more of the other independent variables.  If the assumption of 

independence is violated, the inverse of the matrix may not exist!  In some cases, although the variables are 

independent, they may nevertheless correlate quite highly among themselves.  In such cases (high colinearity among 

independent variables), the computation of the inverse matrix may be difficult and result in considerable error.  If 

the determinant of the matrix is very close to zero, your results should be held suspect! 
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 We will see in latter sections that the inverse of the matrix of independent variable cross-products, 

deviation cross-products or correlations may be used to estimate the standard errors of regression coefficients and 

the covariances among the regression coefficients. 

 

Hypothesis Testing in Multiple Regression 

Testing the Significance of the Multiple Regression Coefficient 

 

The multiple regression coefficient RY,12...k is an index of the degree to which the dependent and weighted 

composite of the independent variables correlate.  The square of the coefficient indicates the proportion of variance 

of the dependent variable which is predicted by the independent variables.  The R
2
Y,12...k may be obtained from  

 

 R
2
Y,1..k = [ β ]' [ ry,x ] that is 

 

     R
2
 = β1ry,1 + β2ry,2 + ... + βkry,k       (5.39) 

 

Since R
2
 is a sample statistic which estimates a population parameter, it may be expected to vary from sample to 

sample and has a standard error. 

 

 The total sum of squares of the dependent variable Y may be partitioned into two main sources of variability: 

 

     (1)  The sum of squares due to regression with the independent variables (SSreg) and 

 

     (2)  The sum of squares due to error or unexplained variance (SSe). 

 

We may estimate these values by 

 

     (a)  SSreg = SSY R
2
Y.12...k  and 

     (b)  SSe   = SSY (1 - R
2
Y.12...k) 

 

Associated with each of these sums of squares are degrees of freedom.  For the SSreg the degrees of 

freedom is the number of independent variables, K.  For the SSe the degrees of freedom are N - K - 1, that is, the 

degrees of freedom for the variance of Y minus the degrees of freedom for regression.  Since the sum of squares for 

regression and error are independent, we may form an F-ratio statistic as 

 

 

              MSreg       Ssreg / K                  R
2

Y,1..k          N-K-1 

     F =   ----------  =  -------------- . -----------------------------    (5.40) 

              MSe         Sse / (N-K-1)        (1 - R
2

Y,1..k)         K 

 

 

The probability of the F statistic for K and (N-K-1) degrees of freedom may be estimated or values for the 

tails obtained from tables of the F distribution.  If the probability of obtaining an F statistic as large or larger than 

that calculated is less than the alpha level selected, the hypothesis that R
2
 = 0 in the population may be rejected. 

 

 

The Standard Error of Estimate 

 

     The following Fig. illustrates that for every combination of the independent variables, there is a distribution of Y 

scores.  Since our prediction equation based on a sample of observations yields only a single Y value for each 

combination of the independent variables, there are obviously some predicted Y scores that are in error.  We may 

estimate the variability of the Y scores at any combination of the X scores.  The standard deviation of these scores 

for a given combination of X scores is called the Standard Error of Estimate.  It is obtained as 
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     SY.X = ( SSe / (N-K-1))
½       

(5.41) 

 

Testing the Regression Coefficients 

 

 Just as we may test the hypothesis that the overall multiple regression coefficient does not depart 

significantly from zero, so may we test the hypothesis that a regression coefficient B does not depart significantly 

from zero.  Note that if we conclude that the coefficient does not depart from zero, we are concluding that the 

associated variable for that coefficient does not contribute significantly to explaining (predicting) the variance of Y. 

 

 The regression coefficients have been expressed both in raw score form (B's) and in standardized score 

form (β's).  We may convert from one form to the other using 

 

     Bj = βj SY / Sj         (5.42) 

 

or   βj = Bj Sj / SY 

 

 

Since these coefficients are sample statistics, they have a standard error.  The standard error of a regression 

coefficient may be obtained as the square root of: 

 

                     S
2

Y.X 

     S
2

B = ---------------------        (5.43) 

          j   SSXj (1 - R
2
j,1..(k_1) 

     

 

     where S
2

Y.X is the standard error of estimate and SSX  is the sum of squares for the jth variable, 

 

           R
2
 j,1..(k-1)  is the squared multiple correlation  of the jth independent variable regressed on the K-1 remaining 

independent variables. 

 

 

 In using the above method to obtain the standard errors of regression coefficients, it is necessary to obtain 

the multiple correlation of each independent variable with the remaining independent variables. 

 

 Another method of obtaining the standard errors of B's is through use of the inverse of the matrix of 

deviation score cross-products among the independent variables.  We indicated this matrix as 

 

     [x'x]
-1

 

 

 in our previous discussion.  If we multiply this matrix by the variance of our error of estimate S
2

Y.X the resulting 

matrix is the variance-covariance matrix of regression coefficients.  That is 

 

     [C]  =  S
2

Y.X [x'x]
-1        

(5.44) 

 

The diagonal elements of [C], that is, C1,1 , C2,2,...,Ck,k are the variances of the B regression coefficients and the off-

diagonal values are the covariances of the regression coefficients for independent variables. 

 

 To test whether or not the Bj regression coefficient departs significantly from zero, we may use either the t-

test statistic or the F-test statistic.  The t-test is 

 

               Bj             Bj 

          t = -----  =  ------  with N-K-1 degrees freedom. 

             √Cj,j          SBj 
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Since the t
2
 is equivalent to the F test with one degree of freedom in the numerator, we can similarly use the F 

statistic with 1 and N-K-1 degrees of freedom where 

 

 

                   B
2

j 

          F = --------         (5.45) 

                  Cj,j 

 

 

 A third method for examining the effect of a single independent variable is to ask whether or not the 

inclusion of the variable in the regression model contributes significantly to the increase in the SSreg over the 

regression model in which the variable is absent.  Since the proportion of variance of Y that is accounted for by 

regression is R
2
, we can obtain the proportion of variance accounted for by a variable by 

 

     R
2

Y,1..j..K - R
2
Y,1..(K_1)        (5.46) 

 

The first R
2
 equation (we will call it the FULL Model) contains all independent variables.  The second (which we 

will call the restricted model) is the proportion of Y score variance predicted by all independent variables except the 

jth variable.  The difference then is the proportion of variance attributable to the jth variable.  The sum of squares of 

Y for the jth variable is therefore 

 

     SSj = SSY( R
2

Y,1..j..K - R
2

Y,1..(K_1) )       (5.47) 

 

The mean square for this source of variability is the same as the SS since there is only 1 degree of freedom.  The 

ratio of the MSj to MSe forms an F statistic with 1 and  N-K-1 degrees of freedom.  That is  

 

             MSj      SSY(R
2
full-R

2
restricted) / 1 

     F = ------ =  -------------------------------      (5.48) 

            MSe      SSY(1 - R
2
full) / (N-K-1) 

 

            R
2
full - R

2
restricted         N-K-1 

       =  --------------------- .   ---------- 

               1 - R
2

full                      1 

 

If the independent variable j does not contribute significantly (incrementally) to the variance of Y, the F statistic 

above will not be significant at the alpha decision level value. 

 

Testing the Difference Between Regression Coefficients 

                      

 Two variables may differ in the cost of collection.  For example, an aptitude test may cost the student or 

institution more than obtaining a high school grade point average.  In selecting one or the other independent variable 

to use in a regression model, there arises the question as to whether or not two regression coefficients differ 

significantly between themselves.  Since the regression coefficients are sample statistics, the difference between two 

coefficients Bj and Bk is itself a sample statistic.  The regression coefficients B are not independent of one another 

unless the independent variables themselves are uncorrelated.  The standard error of the difference between two 

coefficients must therefore take into account not only the variance of each coefficient but also their covariance.  The 

variance of differences between two regression coefficients may be obtained as 

 

     S
2

B - B = Cj,j + Ck,k - Cj,k        (5.49) 

          j   k 

 

     where Cj,j , Ck,k and Cj,k are elements of the [C] matrix. 

The test for significance of difference between two regression coefficients is therefore 
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                         Bj - Bk 

     t (N-K-1) =   -----------------       (5.50) 

                  √[Cj,j+Ck,k-Cj,k] 

 

Stepwise Multiple Regression 

 

 A popular procedure for doing multiple regression by means of a computer program involves what is called 

the Stepwise Multiple Regression procedure.  One independent variable at a time is added to the regression model.  

The independent variables are added in decreasing order of contribution to the variance of Y.  Typically, these 

programs will select the variable X which has the highest simple correlation with Y.  Next, each of the remaining 

variables is tested to see which contributes the most to an increase in the R
2
 (or corresponding F statistic).  That 

variable which most contributes is added next.  This process is repeated until all variables are entered or none 

contribute to a significant increase at the alpha level selected.  Unfortunately, a variable that has been previously 

entered may no longer contribute significantly after another variable is entered due to the co-variability among the 

independent variables.  For this reason, additional tests may be made of variables already entered for deletion.  

Clearly, if the alpha level for entry is equal to the entry level for deletion, one may repeatedly add and delete 

variables ad-infinitum.  For that reason, a different criterion for deletion (larger) is used than for entry.  A better 

method examines all combinations of 1, 2, 3, ..., K variables for that combination which yields the maximum R2.  

Due to the large number of models computed, this method consumes very large quantities of computer time.  It 

should also be noted that most analyses are performed on a sample of data selected from a population.  As such the 

sample correlations and variable means and standard deviations may be expected to vary from sample to sample.  

The stepwise methods will "capitalize" on chance variations in the data.  A replication of the analysis with another 

sample of data will typically yield a different order of entry into the model. 

 

Cross and Double Cross Validation of Regression Models 

 

 Because sample data are used in obtaining the regression coefficients and in obtaining estimates of R2, the 

investigator may well wonder whether or not the estimates obtained are stable.  If prediction is the purpose for 

obtaining the coefficients, the investigator is not likely to predict scores of Y for those subjects in the analysis - the 

actual values of Y are known for those subjects.  More often the question revolves around the accuracy of prediction 

of Y for another sample of subjects.  The scores for this sample are predicted on the basis of a previous sample.  

When the actual Y scores (e.g. GPA's) become available, the difference between the predicted and actual Y scores 

can then be obtained.  The sum of squared differences is then calculated and the validation coefficient computed as 

 

            SSY - SSe 

     V = ------------ 

               SSY 

 

 

This ratio of predicted sum of squares to total sum of squares is comparable to the R
2
 obtained in the original 

sample.  Usually, the value of V is considerably smaller than the R
2
 obtained in the original analysis.   If the number 

of cases available is large, the investigator may "split" his/her sample into two parts.  A multiple regression analysis 

is completed with one part and the resulting regression model used to predict the Y scores for the other part.  This 

cross-validation method provides an immediate indication of the accuracy to expect in use of the model.  Another 

variation involves obtaining regression coefficients from each half of the sample and applying the respective models 

to the other half sample.  Pooling the errors of prediction from both samples yields a doubly-crossed validation 

index.  Unfortunately, there are many ways to split a sample of N subjects into two parts.  Each "split" can yield a 

different estimate of R
2
 and B coefficients.  For this reason, several methods have been developed to estimate the 

"shrunken" R
2
 which will taken into account the sampling variations.  These methods utilize the degrees of freedom 

used in obtaining the R
2
.  One estimate commonly used is 

 

 

                                                   N - 1 

     Adjusted R
2
 = R

2
 - (1 - R

2
) ------------ 

                                                 N - K - 1 
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 The relationship between R2 and the number of subjects (N) and predictors (K) can be readily understood.  

If the number of subjects equals K + 1, the R
2
 will always be 1.0  (assuming some variance in the variables).  The 

reason is that all subjects must fall on the regression line, plane or hyperplane and there is no "freedom" to vary 

about the plane.  As the ratio of the number of subjects to the number of variables studied increases, this "over-

fitting" of the data to the plane decreases.  The larger the ratio of number of subjects to the number of variables, the 

closer will the regression statistics estimate the population values.  Notice however, that R
2
 is biased toward over-

estimation.  This bias becomes smaller and smaller as the ratio of subjects to variables  increases. 

 

Block Entry Multiple Regression 

 

 Several options exist in LazStats for completing the typical Ordinary Least Squares Multiple Regression 

(OLS MR.)  One method lets the user enter predictors in “blocks” of one or more variables.  The results for each 

block are obtained and the regression process ended when further inclusion of variables make no further 

contribution at the level of significance chosen.  To illustrate, we will use a file labeled cansas.LAZ.  You will see 

that we use this file for a number of different procedures.  Basically, the file contains three physical measurements 

for individuals and three performance measurements.  The last performance measure is labeled “jump” and is a 

measure of how far the individual can jump.  This will be our dependent variable to be predicted by one or more of 

the other variables.  The dialog for this procedure is shown below: 

 

 

Fig. 5.4   Dialog for the Block Entry Multiple Regression Procedure 

Two blocks have been entered in the above form.  Two variables (weight and waist) were entered as the first block.  

Pulse is entered as the second block.  When we click the Compute button we obtain: 

 
Dependent variable: jumps 

 

Variable       Beta      B         Std.Err.  t         Prob.>t   VIF       TOL 

    weight    -0.246    -0.510     0.996    -0.513     0.615     4.121     0.243 

     waist     0.022     0.359     7.679     0.047     0.963     4.121     0.243 

 Intercept     0.000   148.772   146.699     1.014     0.325 

 

SOURCE      DF        SS        MS        F      Prob.>F 

Regression  2   2564.420  1282.210     0.460     0.6390 

Residual   17  47393.780  2787.869 

Total      19  49958.200 

 

R2 = 0.0513, F =     0.46, D.F. = 2 17, Prob>F = 0.6390 

Adjusted R2 = -0.0603 

 

Standard Error of Estimate =    52.80 

F =  0.460 with probability =  0.639 

Block 1 did not meet entry requirements 

 

Notice that neither of the variables in the first block contributed to a significant relationship to the dependent 

variable.  The next block is then entered with the following results: 
 
Dependent variable: jumps 
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Variable       Beta      B         Std.Err.  t         Prob.>t   VIF       TOL 

    weight    -0.259    -0.538     1.034    -0.520     0.610     4.189     0.239 

     waist     0.015     0.234     7.928     0.029     0.977     4.144     0.241 

     pulse    -0.055    -0.389     1.863    -0.209     0.837     1.161     0.861 

 Intercept     0.000   179.887   212.284     0.847     0.409 

 

SOURCE      DF        SS        MS        F      Prob.>F 

Regression  3   2692.894   897.631     0.304     0.8222 

Residual   16  47265.306  2954.082 

Total      19  49958.200 

 

R2 = 0.0539, F =     0.30, D.F. = 3 16, Prob>F = 0.8222 

Adjusted R2 = -0.1235 

 

Standard Error of Estimate =    54.35 

F =  0.304 with probability =  0.822 

Block 2 did not meet entry requirements 

 

Again, none of the variables predicted the jumps to a degree acceptable by most researchers (probabilities of the t 

and F values less than 0.05.) 
 

Stepwise Forward Multiple Regression 

 

 Probably the most popular MR method taught and used by researchers is the stepwise procedure.  In this 

procedure one variable at a time is added to the prediction model.  In order to enter the equation, a variable must 

meet a user-specified significance level.  In addition, to be retained in the model as other variables are entered, a 

previously entered variable must still be significant at another user-specified level (usually larger than the entry 

requirement.) 

 

 Shown below is the dialog used to predict jumps in the cansas.LAZ file using the three physical 

measurements of weight, waist and pulse. 

 

 

 

 

Fig. 5.5   Forward Stepwise MR Dialog 

The obtained results are shown below: 

 
Stepwise Multiple Regression by Bill Miller 

 

 

 

Product-Moment Correlations Matrix 

 

Variables     weight       waist       pulse       jumps   
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    weight      1.000       0.870      -0.366      -0.226   

     waist      0.870       1.000      -0.353      -0.191   

     pulse     -0.366      -0.353       1.000       0.035   

     jumps     -0.226      -0.191       0.035       1.000   

 

 

Means 

 

Variables     weight       waist       pulse       jumps   

              178.600      35.400      56.100      70.300   

 

 

 

 

Standard Deviations 

 

Variables     weight       waist       pulse       jumps   

               24.691       3.202       7.210      51.277   

 

 

Stepwise Multiple Regression by Bill Miller 

 

----------------- STEP 1 ------------------ 

SOURCE    DF        SS      MS        F        Prob.>F 

Regression   1  2558.343  2558.343     0.972     0.337 

Residual    18 47399.857  2633.325 

Total       19 49958.200 

 

Dependent Variable: jumps 

 

       R        R2         F     Prob.>F  DF1  DF2 

   0.226     0.051     0.972     0.337    1   18 

Adjusted R Squared = -0.002 

 

Std. Error of Estimate =     51.316 

 

Variable       Beta      B         Std.Error t         Prob.>t   VIF       TOL 

    weight    -0.226    -0.470     0.477    -0.986     0.337     1.000     1.000  

Exceeds limit - to be removed. 

 

Constant =    154.237 

 

 

Candidates for entry in next step. 

Candidate  Partial  F Statistic  Prob.  DF1  DF2 

weight      0.0000    0.0000    1.0000     1   18 

waist       0.1238   -0.2716    1.0000     1   18 

pulse       0.2295   -0.9009    1.0000     1   18 

No further steps meet criterion for entry. 

 

-------------FINAL STEP----------- 

 

In this analysis, the first variable entered (weight) was not significant.  The other two predictors made no significant 

additional contribution to the prediction of jumps and therefore the analysis was terminated.  Notice that a test of the 

partial correlation was performed to determine whether or not an additional variable should be entered. 

 

Backward Stepwise Multiple Regression 

 

 In contrast to the adding of one variable at a time as in the forward stepwise method, all predictors are 

initially entered and then eliminated, one by one in the backward method.  This continues until all variables have 

been removed.  The dialog for the analysis of the cansas.LAZ file is shown below: 
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Fig. 5.6   Backward Stepwise MR Dialog 

The results are shown below: 

 
Backward Stepwise Multiple Regression by Bill Miller 

 

----------------- STEP 1 ------------------ 

Determinant of correlation matrix =   0.1977 

 

SOURCE    DF        SS      MS        F        Prob.>F 

Regression   3  2692.894   897.631     0.304     0.822 

Residual    16 47265.306  2954.082 

Total       19 49958.200 

 

Dependent Variable: jumps 

 

       R        R2         F     Prob.>F  DF1  DF2 

   0.232     0.054     0.304     0.822    3   16 

Adjusted R Squared = -0.123 

 

Std. Error of Estimate =     54.351 

 

Variable       Beta      B         Std.Error t         Prob.>t   VIF       TOL 

    weight    -0.259    -0.538     1.034    -0.520     0.610     4.189     0.239 

     waist     0.015     0.234     7.928     0.029     0.977     4.144     0.241 

     pulse    -0.055    -0.389     1.863    -0.209     0.837     1.161     0.861 

 

Constant =    179.887 

 

Partial Correlations 

 

Variables     weight       waist       pulse   

               -0.129       0.007      -0.052   

 

 

Variable 2 (waist) eliminated 

 
 

----------------- STEP 2 ------------------ 

Determinant of correlation matrix =   0.8196 

 

SOURCE    DF        SS      MS        F        Prob.>F 

Regression   2  2690.325  1345.162     0.484     0.625 

Residual    17 47267.875  2780.463 

Total       19 49958.200 

 

Dependent Variable: jumps 

 

       R        R2         F     Prob.>F  DF1  DF2 

   0.232     0.054     0.484     0.625    2   17 

Adjusted R Squared = -0.057 

 

Std. Error of Estimate =     52.730 

 

Variable       Beta      B         Std.Error t         Prob.>t   VIF       TOL 

    weight    -0.246    -0.512     0.526    -0.972     0.344     1.154     0.866 
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     pulse    -0.055    -0.393     1.803    -0.218     0.830     1.154     0.866 

 

Constant =    183.762 

 

Partial Correlations 

 

Variables     weight       pulse   

               -0.230      -0.053   

 

 

Variable 2 (pulse) eliminated 

 

 

----------------- STEP 3 ------------------ 

Determinant of correlation matrix =   0.9488 

 

SOURCE    DF        SS      MS        F        Prob.>F 

Regression   1  2558.343  2558.343     0.972     0.337 

Residual    18 47399.857  2633.325 

Total       19 49958.200 

 

Dependent Variable: jumps 

 

       R        R2         F     Prob.>F  DF1  DF2 

   0.226     0.051     0.972     0.337    1   18 

Adjusted R Squared = -0.002 

 

Std. Error of Estimate =     51.316 

 

Variable       Beta      B         Std.Error t         Prob.>t   VIF       TOL 

    weight    -0.226    -0.470     0.477    -0.986     0.337     1.000     1.000 

 

Constant =    154.237 

 

Partial Correlations 

 

Variables     weight   

               -0.226   

 

You can see that in each step the variable with the smallest partial correlation is the one eliminated in the next step 

of the analysis. 
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Simultaneous Multiple Regression 

 

 Another method for obtaining multiple regression results is known as the simultaneous method.  In this 

method the correlation among all of the included variables of the analysis are considered as the dependent variable 

to be predicted by the remaining entered variables.  We will demonstrate by using all of the variables in the 

cansas.LAZ file as shown below: 

 

Fig. 5.7  Simultaneous MR Dialog 

The results obtained are shown below.  The first part gives the multiple correlation of each variable regressed on the 

other variables and the test of significance.  Following that are the standardized regression coefficients (Betas) in 

columns for each dependent variable.  The –1.000 in the column corresponds with the dependent variable.  Also 

shown are the standard errors of prediction for each variable followed by the raw regression coefficients and 

intercepts (B weights) and the partial correlation of each variable with the remaining variables.  It might be noted 

here that several factor analysis methods obtain simultaneous multiple regressions as a means of estimating how 

much common variance (the squared R) there is between each variable and the other variables. 

 
Simultaneous Multiple Regression by Bill Miller 

 

Product-Moment Correlations Matrix with   20 cases. 

 

 

Variables 

                 weight        waist        pulse        chins       situps 

    weight       1.000        0.870       -0.366       -0.390       -0.493  

     waist       0.870        1.000       -0.353       -0.552       -0.646  

     pulse      -0.366       -0.353        1.000        0.151        0.225  

     chins      -0.390       -0.552        0.151        1.000        0.696  

    situps      -0.493       -0.646        0.225        0.696        1.000  

     jumps      -0.226       -0.191        0.035        0.496        0.669  

 

 

Variables 

                  jumps 
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    weight      -0.226  

     waist      -0.191  

     pulse       0.035  

     chins       0.496  

    situps       0.669  

     jumps       1.000  

 

 

 

 

Means with   20 valid cases. 

 

Variables       weight        waist        pulse        chins       situps 

               178.600       35.400       56.100        9.450      145.550  

 

Variables        jumps 

                70.300  

 

 

Standard Deviations with   20 valid cases. 

 

Variables       weight        waist        pulse        chins       situps 

                24.691        3.202        7.210        5.286       62.567  

 

Variables        jumps 

                51.277  

 

Determinant of correlation matrix =   0.0208 

 

Multiple Correlation Coefficients for Each Variable 

 

  Variable       R        R2         F     Prob.>F  DF1  DF2 

    weight     0.902     0.814    12.249     0.000    5   14 

     waist     0.939     0.882    21.017     0.000    5   14 

     pulse     0.386     0.149     0.490     0.778    5   14 

     chins     0.734     0.539     3.275     0.036    5   14 

    situps     0.884     0.782    10.026     0.000    5   14 

     jumps     0.798     0.636     4.901     0.008    5   14 

 

Betas in Columns with   20 cases. 

 

 

Variables 

                 weight        waist        pulse        chins       situps 

    weight      -1.000        0.676       -0.321        0.347        0.372  

     waist       1.070       -1.000        0.004       -0.616       -0.771  

     pulse      -0.070        0.000       -1.000       -0.017        0.049  

     chins       0.140       -0.157       -0.031       -1.000        0.143  

    situps       0.317       -0.415        0.191        0.303       -1.000  

     jumps      -0.301        0.317       -0.149        0.254        0.533  

 

 

Variables 

                  jumps 

    weight      -0.588  

     waist       0.982  

     pulse      -0.064  

     chins       0.201  

    situps       0.888  

     jumps      -1.000  

 

 

 

Standard Errors of Prediction 

Variable     Std.Error 

    weight    12.407 

     waist     1.279 

     pulse     7.749 

     chins     4.181 

    situps    34.056 

     jumps    36.020 

 

Raw Regression Coefficients with   20 cases. 
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Variables 

                 weight        waist        pulse        chins       situps 

    weight      -1.000        0.088       -0.094        0.074        0.944  

     waist       8.252       -1.000        0.008       -1.017      -15.069  

     pulse      -0.240        0.000       -1.000       -0.012        0.424  

     chins       0.655       -0.095       -0.042       -1.000        1.697  

    situps       0.125       -0.021        0.022        0.026       -1.000  

     jumps      -0.145        0.020       -0.021        0.026        0.650  

 

 

Variables 

                  jumps 

    weight      -1.221  

     waist      15.718  

     pulse      -0.453  

     chins       1.947  

    situps       0.728  

     jumps      -1.000  

 

 

 

Variable   Constant 

    weight  -114.302 

     waist    22.326 

     pulse    71.223 

     chins    27.313 

    situps   424.896 

     jumps  -366.967 

 

Partial Correlations with   20 cases. 

 

 

Variables 

                 weight        waist        pulse        chins       situps 

    weight      -1.000        0.851       -0.150        0.221        0.344  

     waist       0.851       -1.000        0.001       -0.311       -0.566  

     pulse      -0.150        0.001       -1.000       -0.023        0.097  

     chins       0.221       -0.311       -0.023       -1.000        0.208  

    situps       0.344       -0.566        0.097        0.208       -1.000  

     jumps      -0.420        0.558       -0.097        0.226        0.688  

 

 

Variables 

                  jumps 

    weight      -0.420  

     waist       0.558  

     pulse      -0.097  

     chins       0.226  

    situps       0.688  

     jumps      -1.000 

 

Best Fit Multiple Regression 

 

 In many research projects an investigator is “searching” for possible relationships with a given variable of 

interest.  As an exploratory method, this “best fit” method may be used to identify variables of possible interest for 

further exploration.  The method finds the best combination of 2 or more predictor variables for explaining the 

variance of a dependent variable.  Since one typically is using a sample, caution must be exercised because this 

method will “capitalize” on variations that normally occur from sample to sample. 

 

 To demonstrate this procedure, the file used in the other multiple regression procedures will be used 

(cansas.LAZ.)  The dialog for this procedure is shown below: 
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Fig. 5.8  Best Fit MR Dialog 

The results obtained are: 

 
 
Best Combination Multiple Regression by Bill Miller 

 Set  1 includes variables: 

variable 1 (weight) 

 

Squared  R = 0.0512 

 

 Set  1 includes variables: 

variable 2 (waist) 

 

Squared  R = 0.0367 

 

 Set  1 includes variables: 

variable 3 (pulse) 

 

Squared  R = 0.0012 

 

 Set  1 includes variables: 

variable 4 (chins) 

 

Squared  R = 0.2458 

 

 Set  1 includes variables: 

variable 5 (situps) 

 

Squared  R = 0.4478 

 

 

Variables entered in step  1 

 5 situps 

 

 Set  1 includes variables: 

variable 5 (situps) 

 

Squared  R = 0.4478 

 

Squared Multiple Correlation = 0.4478 

Dependent variable = jumps 

ANOVA for Regression Effects :  

SOURCE      df           SS           MS            F             Prob 

Regression   1     22373.1193     22373.1193        14.5991         0.0013 

Residual    18     27585.0807      1532.5045 

Total       19     49958.2000 

 

Variables in the equation 

VARIABLE            b        s.e. b    Beta    t    prob. t 

          situps    0.54846   0.1435   0.6692  3.821 0.0013 

(Intercept)        -9.52819 

 

Increase in squared R for this step = 0.447837 

F =  14.5991 with D.F. 1 and 18 with Probability = 0.0013 

---------------------------------------------------------- 
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 Set  2 includes variables: 

variable 1 (weight) 

variable 2 (waist) 

 

Squared  R = 0.0513 

 

 Set  2 includes variables: 

variable 1 (weight) 

variable 3 (pulse) 

 

Squared  R = 0.0539 

 

 Set  2 includes variables: 

variable 1 (weight) 

variable 4 (chins) 

 

Squared  R = 0.2471 

 

 Set  2 includes variables: 

variable 1 (weight) 

variable 5 (situps) 

 

Squared  R = 0.4620 

 

 Set  2 includes variables: 

variable 2 (waist) 

variable 3 (pulse) 

 

Squared  R = 0.0379 

 

 Set  2 includes variables: 

variable 2 (waist) 

variable 4 (chins) 

 

Squared  R = 0.2555 

 

 Set  2 includes variables: 

variable 2 (waist) 

variable 5 (situps) 

 

Squared  R = 0.5470 

 

 Set  2 includes variables: 

variable 3 (pulse) 

variable 4 (chins) 

 

Squared  R = 0.2474 

 

 Set  2 includes variables: 

variable 3 (pulse) 

variable 5 (situps) 

 

Squared  R = 0.4619 

 

 Set  2 includes variables: 

variable 4 (chins) 

variable 5 (situps) 

 

Squared  R = 0.4496 

 

 

Variables entered in step  2 

 2 waist 

 5 situps 

 

 Set  2 includes variables: 

variable 2 (waist) 

variable 5 (situps) 

 

Squared  R = 0.5470 

 

Squared Multiple Correlation = 0.5470 

Dependent variable = jumps 
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ANOVA for Regression Effects :  

SOURCE      df           SS           MS            F             Prob 

Regression   2     27329.4127     13664.7064        10.2657         0.0012 

Residual    17     22628.7873      1331.1051 

Total       19     49958.2000 

 

Variables in the equation 

VARIABLE            b        s.e. b    Beta    t    prob. t 

           waist    6.60502   3.4230   0.4124  1.930 0.0705 

          situps    0.76669   0.1752   0.9355  4.377 0.0004 

(Intercept)      -275.10904 

 

Increase in squared R for this step = 0.099209 

F =   3.7234 with D.F. 1 and 17 with Probability = 0.0705 

---------------------------------------------------------- 

 

 Set  3 includes variables: 

variable 1 (weight) 

variable 2 (waist) 

variable 3 (pulse) 

 

Squared  R = 0.0539 

 

 Set  3 includes variables: 

variable 1 (weight) 

variable 2 (waist) 

variable 4 (chins) 

 

Squared  R = 0.3086 

 

 Set  3 includes variables: 

variable 1 (weight) 

variable 2 (waist) 

variable 5 (situps) 

 

Squared  R = 0.6125 

 

 Set  3 includes variables: 

variable 1 (weight) 

variable 3 (pulse) 

variable 4 (chins) 

 

Squared  R = 0.2502 

 

 Set  3 includes variables: 

variable 1 (weight) 

variable 3 (pulse) 

variable 5 (situps) 

 

Squared  R = 0.4696 

 

 Set  3 includes variables: 

variable 1 (weight) 

variable 4 (chins) 

variable 5 (situps) 

 

Squared  R = 0.4646 

 

 Set  3 includes variables: 

variable 2 (waist) 

variable 3 (pulse) 

variable 4 (chins) 

 

Squared  R = 0.2556 

 

 Set  3 includes variables: 

variable 2 (waist) 

variable 3 (pulse) 

variable 5 (situps) 

 

Squared  R = 0.5481 

 

 Set  3 includes variables: 

variable 2 (waist) 
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variable 4 (chins) 

variable 5 (situps) 

 

Squared  R = 0.5577 

 

 Set  3 includes variables: 

variable 3 (pulse) 

variable 4 (chins) 

variable 5 (situps) 

 

Squared  R = 0.4636 

 

 

Variables entered in step  3 

 1 weight 

 2 waist 

 5 situps 

 

 Set  3 includes variables: 

variable 1 (weight) 

variable 2 (waist) 

variable 5 (situps) 

 

Squared  R = 0.6125 

 

Squared Multiple Correlation = 0.6125 

Dependent variable = jumps 

ANOVA for Regression Effects :  

SOURCE      df           SS           MS            F             Prob 

Regression   3     30601.6275     10200.5425         8.4317         0.0014 

Residual    16     19356.5725      1209.7858 

Total       19     49958.2000 

 

Variables in the equation 

VARIABLE            b        s.e. b    Beta    t    prob. t 

          weight   -1.09743   0.6673  -0.5284 -1.645 0.1195 

           waist   14.61323   5.8617   0.9125  2.493 0.0240 

          situps    0.81774   0.1699   0.9978  4.814 0.0002 

(Intercept)      -370.02945 

 

Increase in squared R for this step = 0.065499 

F =   2.7048 with D.F. 1 and 16 with Probability = 0.1195 

---------------------------------------------------------- 

 

 Set  4 includes variables: 

variable 1 (weight) 

variable 2 (waist) 

variable 3 (pulse) 

variable 4 (chins) 

 

Squared  R = 0.3098 

 

 Set  4 includes variables: 

variable 1 (weight) 

variable 2 (waist) 

variable 3 (pulse) 

variable 5 (situps) 

 

Squared  R = 0.6168 

 

 Set  4 includes variables: 

variable 1 (weight) 

variable 2 (waist) 

variable 4 (chins) 

variable 5 (situps) 

 

Squared  R = 0.6329 

 

 Set  4 includes variables: 

variable 1 (weight) 

variable 3 (pulse) 

variable 4 (chins) 

variable 5 (situps) 
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Squared  R = 0.4719 

 

 Set  4 includes variables: 

variable 2 (waist) 

variable 3 (pulse) 

variable 4 (chins) 

variable 5 (situps) 

 

Squared  R = 0.5583 

 

 

Variables entered in step  4 

 1 weight 

 2 waist 

 4 chins 

 5 situps 

 

 Set  4 includes variables: 

variable 1 (weight) 

variable 2 (waist) 

variable 4 (chins) 

variable 5 (situps) 

 

Squared  R = 0.6329 

 

Squared Multiple Correlation = 0.6329 

Dependent variable = jumps 

ANOVA for Regression Effects :  

SOURCE      df           SS           MS            F             Prob 

Regression   4     31619.5424      7904.8856         6.4658         0.0031 

Residual    15     18338.6576      1222.5772 

Total       19     49958.2000 

 

Variables in the equation 

VARIABLE            b        s.e. b    Beta    t    prob. t 

          weight   -1.18963   0.6784  -0.5728 -1.754 0.0999 

           waist   15.86516   6.0502   0.9907  2.622 0.0192 

           chins    1.98471   2.1751   0.2046  0.912 0.3760 

          situps    0.72449   0.1990   0.8840  3.641 0.0024 

(Intercept)      -403.06414 

 

Increase in squared R for this step = 0.020375 

F =   0.8326 with D.F. 1 and 15 with Probability = 0.3760 

---------------------------------------------------------- 

 

 

Last variable added failed entry test. Job ended. 

 

Product-Moment Correlations Matrix with   20 cases. 

 

 

Variables 

                 weight        waist        pulse        chins       situps 

    weight       1.000        0.870       -0.366       -0.390       -0.493  

     waist       0.870        1.000       -0.353       -0.552       -0.646  

     pulse      -0.366       -0.353        1.000        0.151        0.225  

     chins      -0.390       -0.552        0.151        1.000        0.696  

    situps      -0.493       -0.646        0.225        0.696        1.000  

     jumps      -0.226       -0.191        0.035        0.496        0.669  

 

 

Variables 

                  jumps 

    weight      -0.226  

     waist      -0.191  

     pulse       0.035  

     chins       0.496  

    situps       0.669  

     jumps       1.000  

 

 

 

 

Means with   20 valid cases. 
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Variables       weight        waist        pulse        chins       situps 

               178.600       35.400       56.100        9.450      145.550  

 

Variables        jumps 

                70.300  

 

 

Standard Deviations with   20 valid cases. 

 

Variables       weight        waist        pulse        chins       situps 

                24.691        3.202        7.210        5.286       62.567  

 

Variables        jumps 

                51.277  

 

Polynomial (Non-Linear) Regression 

 

 In working with a variety of X and Y relationships, few investigators have failed to observe situations 

where the X and Y scores were not linearly related but rather were curvilinearly related.  For example, achievement 

on a test may well have a curvilinear relationship with test anxiety - too little or too much producing a lower test 

score than a moderate degree of anxiety.  To describe the relationship therefore requires the use of non-linear 

indices.  We know from analytic geometry, that a curve may be described in cartesian coordinates by a polynomial 

in powers of X.  For example, a parabola may be described by 

 

  Y = B1X + B2X2 + B0 

 

In fact, a set of n data points (X,Y) can be completely "fit" by a polynomial of order n.  Typically, however, we are 

interested in finding the lowest order (k) that adequately describes the Y variance.  We could repeatedly obtain 

models with 1, 2, 3 .. n-1 terms each time obtaining the sum of squared residuals and stop adding values when the 

change in the error term was less than some arbitrary value.  This could be done using the multiple regression 

programs already available in the multiple regression menu.  Unfortunately, when values are raised to the power of 6 

or higher, most computers suffer extensive "overflow" or round-off error in their calculations.  To use higher order 

terms requires us to "transform" our data in such a manner that minimizes this problem.  A popular method is to 

express each power of X in terms of an orthogonal polynomial pj(X) 

 

 where                  n 

  Σ pj
2(Xi) = cj  (j = 0,1..,q) and 

                            i=1 

 

                             n 

  Σ pj(Xi)pk(Xi) = 0  (j <≠k) 

                           i=1  

 

  for n variables of X 

 

Solving these orthogonal polynomials and then transforming back to the original set of scores results in improving 

the degree of polynomial that can be analyzed. 

 

Ridge Regression Analysis 

 

 Simple and multiple regression analyses using the least-squares method for estimating the regression 

coefficients assumes normally distributed, independent errors of the y scores corresponding to levels of the 

independent (X) scores.  Frequently, these assumptions do not hold or there is high colinearity among the 

independent variables.  In addition, the presence of "outliers" or extreme scores may often result in high distortion of 

the regression coefficients and their standard errors.  There have been a variety of methods designed to provide 

alternative estimates of regression coefficients using criteria other than minimizing the squared differences of 
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observed and predicted dependent scores.  For example, one can attempt to minimize the absolute deviations or 

minimize the standard error of regression.  One method which is finding increased use is termed "ridge regression".   

 

In this method, the regression model (generalized ridge regression) is: 

 

  Y = Z' + e 

  where Y is the vector of n dependent scores, Z is a matrix Z = XP where 

   X is the n by m matrix of independent scores 

   and P is the m by m matrix of eigenvectors of the X'X matrix, and  

   ' is the vector of coefficients estimated by 

    ' = [Z'Z + K]-1Z'Y where  

     K is a diagonal matrix of ki values 

     with ki >= 0, i = 1..m 

 

The generalized ridge regression method minimizes the sum of squared deviations of the estimated coefficients ' 

from the values ' = P'ß where ß is the vector of least-squares regression coefficients.  The ridge regression analysis 

solves for an optimal set of k values.  Even when the determinant of the X'X matrix nears zero (the rank of the 

matrix is less than the number of independent predictors), a set of coefficients will be obtained. 

 

Binary Logistic Regression 

(Contributed By John Pezzullo) 

 

Background Info (just what is logistic regression, anyway?) 

 

Ordinary regression deals with finding a function that relates a continuous outcome variable (dependent variable y) 

to one or more predictors (independent variables x1, x2, etc.). Simple linear regression assumes a function of the 

form: 

y = c0 + c1 * x1 + c2 * x2 +... 

and finds the values of c0, c1, c2, etc. (c0 is called the "intercept" or "constant term"). 

  

Logistic regression is a variation of ordinary regression, useful when the observed outcome is restricted to two 

values, which usually represent the occurrence or non-occurrence of some outcome event, (usually coded as 1 or 0, 

respectively). It produces a formula that predicts the probability of the occurrence as a function of the independent 

variables.  

 

Logistic regression fits a special s-shaped curve by taking the linear regression (above), which could produce any y-

value between minus infinity and plus infinity, and transforming it with the function: 

p = Exp(y) / ( 1 + Exp(y) ) which produces p-values between 0 (as y approaches minus infinity) and 1 (as y 

approaches plus infinity). This now becomes a special kind of non-linear regression, which this page performs.  

Logistic regression also produces Odds Ratios (O.R.) associated with each predictor value. The odds of an event is 

defined as the probability of the outcome event occurring divided by the probability of the event not occurring. 

The odds ratio for a predictor tells the relative amount by which the odds of the outcome increase (O.R. greater than 

1.0) or decrease (O.R. less than 1.0) when the value of the predictor value is increased by 1.0 units.  

 

A standard iterative method is used to minimize the Log Likelihood Function (LLF), defined as the sum of the 

logarithms of the predicted probabilities of occurrence for those cases where the event occurred and the logarithms 

of the predicted probabilities of non-occurrence for those cases where the event did not occur.  

 

Minimization is by Newton's method, with a very simple elimination algorithm to invert and solve the simultaneous 

equations. Central-limit estimates of parameter standard errors are obtained from the diagonal terms of the inverse 

matrix. Odds Ratios and their confidence limits are obtained by exponentiating the parameters and their lower and 

upper confidence limits (approximated by +/- 1.96 standard errors).  
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No special convergence-acceleration techniques are used. For improved precision, the independent variables are 

temporarily converted to "standard scores" ( value - Mean ) / StdDev. The Null Model is used as the starting guess 

for the iterations -- all parameter coefficients are zero, and the intercept is the logarithm of the ratio of the number of 

cases with y=1 to the number with y=0. Convergence is not guaranteed, but this page should work properly with 

most practical problems that arise in real-world situations.  

 

This implementation has no predefined limits for the number of independent variables or cases. The actual limits are 

probably dependent on the user's available memory and other computer-specific restrictions.  

 

When this analysis is selected from the menu, the form below is used to select the dependent and independent 

variables.  We are using the BinaryReg2.LAZ file for an example. 

 

 

Fig. 5.9  Binary Logistic MR Dialog 

 

The results obtained are: 

 
Logistic Regression Adapted from John C. Pezzullo 

Java program at http://members.aol.com/johnp71/logistic.html 

 

Descriptive Statistics 

5 cases have Y=0; 6 cases have Y=1. 

Variable  Label            Average     Std.Dev. 

     1           VAR.2     3.8091     2.3796 

     2           VAR.3     3.8727     1.9480 

Descriptive Statistics 

5 cases have Y=0; 6 cases have Y=1. 

Variable  Label            Average     Std.Dev. 

     1           VAR.2     3.8091     2.3796 

     2           VAR.3     3.8727     1.9480 

 

Converged 

Descriptive Statistics 

5 cases have Y=0; 6 cases have Y=1. 

Variable  Label            Average     Std.Dev. 

     1           VAR.2     3.8091     2.3796 

     2           VAR.3     3.8727     1.9480 

 

Converged 

 

Overall Model Fit... Chi Square =  10.3070 with df =   2 and prob. =   0.0058 

 

Coefficients and Standard Errors... 

Variable        Label     Coeff.     StdErr     p 

    1           VAR.2     1.2452     1.5087     0.4092 

    2           VAR.3     2.2438     1.7746     0.2061 

Overall Model Fit... Chi Square =  10.3070 with df =   2 and prob. =   0.0058 

 

Coefficients and Standard Errors... 

Variable        Label     Coeff.     StdErr     p 

    1           VAR.2     1.2452     1.5087     0.4092 
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    2           VAR.3     2.2438     1.7746     0.2061 

Intercept   -11.9555 

 

Odds Ratios and 95% Confidence Intervals... 

Variable            O.R.       Low   --   High 

          VAR.2     3.4735     0.1805    66.8282 

          VAR.3     9.4294     0.2910   305.5108 

 

      X           X        Y       Prob 

     1.1000      2.0000    0     0.0022 

     3.2000      4.0000    0     0.7319 

     1.5000      1.6000    0     0.0015 

     2.9000      2.4000    0     0.0493 

     3.3000      1.9000    0     0.0270 

     4.2000      3.3000    1     0.6635 

     2.4000      4.1000    1     0.5579 

     1.5000      6.2000    1     0.9786 

     6.0000      4.0000    1     0.9889 

     6.8000      4.7000    1     0.9991 

     9.0000      8.4000    1     1.0000 

 

Classification Table 

           Predicted 

        ---------------  

Observed    0      1     Total 

        ---------------  

   0    |   4  |   1  |   5  | 

   1    |   0  |   6  |   6  | 

        ---------------  

Total   |   4  |   7  |  11   

        --------------- 

 

 

Cox Proportional Hazards Survival Regression 

(Contributed by John Pezzullo) 

 

This program analyzes survival-time data by the method of Proportional Hazards regression (Cox). Given survival 

times, final status (alive or dead) , and one or more covariates, it produces a baseline survival curve, covariate 

coefficient estimates with their standard errors, risk ratios, 95% confidence intervals, and significance levels. 

 

A patient asked his surgeon what the odds were of him surviving an impending operation. The doctor replied they 

were 50/50 but he'd be all right because the first fifty had already died!! 

 

Background Information (just what is Proportional Hazards Survival Regression, 
anyway?)  

 

Survival analysis takes the survival times of a group of subjects (usually with some kind of medical condition) and 

generates a survival curve, which shows how many of the members remain alive over time. Survival time is usually 

defined as the length of the interval between diagnosis and death, although other "start" events (such as surgery 

instead of diagnosis), and other "end" events (such as recurrence instead of death) are sometimes used.  

 

The major mathematical complication with survival analysis is that you usually do not have the luxury of waiting 

until the very last subject has died of old age; you normally have to analyze the data while some subjects are still 

alive. Also, some subjects may have moved away, and may be lost to follow-up. In both cases, the subjects were 

known to have survived for some amount of time (up until the time you last saw them), but you don't know how 

much longer they might ultimately have survived. Several methods have been developed for using this "at least this 

long" information to preparing unbiased survival curve estimates, the most common being the Life Table method 

and the method of Kaplan and Meier.  

 

We often need to know whether survival is influenced by one or more factors, called "predictors" or "covariates", 

which may be categorical (such as the kind of treatment a patient received) or continuous (such as the patient's age, 

weight, or the dosage of a drug). For simple situations involving a single factor with just two values (such as drug vs 
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placebo), there are methods for comparing the survival curves for the two groups of subjects. But for more 

complicated situations we need a special kind of regression that lets us assess the effect of each predictor on the 

shape of the survival curve.  

 

To understand the method of proportional hazards, first consider a "baseline" survival curve. This can be thought of 

as the survival curve of a hypothetical "completely average" subject -- someone for whom each predictor variable is 

equal to the average value of that variable for the entire set of subjects in the study. This baseline survival curve 

doesn't have to have any particular formula representation; it can have any shape whatever, as long as it starts at 1.0 

at time 0 and descends steadily with increasing survival time.  

 

The baseline survival curve is then systematically "flexed" up or down by each of the predictor variables, while still 

keeping its general shape. The proportional hazards method computes a coefficient for each predictor variable that 

indicates the direction and degree of flexing that the predictor has on the survival curve. Zero means that a variable 

has no effect on the curve -- it is not a predictor at all; a positive variable indicates that larger values of the variable 

are associated with greater mortality. Knowing these coefficients, we could construct a "customized" survival curve 

for any particular combination of predictor values. More importantly, the method provides a measure of the 

sampling error associated with each predictor's coefficient. This lets us assess which variables' coefficients are 

significantly different from zero; that is: which variables are significantly related to survival. 

 

The log-likelihood function is minimized by Newton's method, with a very simple elimination algorithm to invert 

and solve the simultaneous equations. Central-limit estimates of parameter standard errors are obtained from the 

diagonal terms of the inverse matrix. 95% confidence intervals around the parameter estimates are obtained by a 

normal approximation. Risk ratios (and their confidence limits) are computed as exponential functions of the 

parameters (and their confidence limits). The baseline survival function is generated for each time point at which an 

event (death) occurred.  

 

No special convergence-acceleration techniques are used. For improved precision, the independent variables are 

temporarily converted to "standard scores" ( value - Mean ) / StdDev. The Null Model (all parameters = 0 )is used as 

the starting guess for the iterations. Convergence is not guaranteed, but this page should work properly with most 

real-world data.  

 

There are no predefined limits to the number of variables or cases this page can handle. The actual limits are 

probably dependent on your computer's available memory. 

 

The specification form for this analysis is shown below with variables entered for a sample file labeled 

COXREGDATA.LAZ: 

 

 

 

Fig. 5.10  Cox Proportional Hazzard Regression Dialog 

 

Results for the above sample are as follows: 

 
Cox Proportional Hazards Survival Regression Adapted from John C. Pezzullo 

Java program at http://members.aol.com/johnp71/prophaz.html 
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Descriptive Statistics 

Variable  Label            Average     Std.Dev. 

     1            VAR1    51.1818    10.9778 

 

Converged 

 

Overall Model Fit... 

Chi Square =   7.3570 with d.f. 1 and probability =   0.0067 

 

Coefficients, Std Errs, Signif, and Confidence Intervals 

 

Var             Coeff.    StdErr       p      Lo95%    Hi95% 

      VAR1     0.3770     0.2542   0.1379  -0.1211   0.8752 

 

Risk Ratios and Confidence Intervals 

 

Variable      Risk Ratio   Lo95%     Hi95% 

      VAR1     1.4580     0.8859     2.3993 

 

Baseline Survivor Function (at predictor means)... 

    2.0000     0.9979 

    7.0000     0.9820 

    9.0000     0.9525 

   10.0000     0.8310 

Weighted Least-Squares Regression 

 
For regressions with cross-section data (where the subscript "i" denotes a particular individual or firm at a point in 

time), it is usually safe to assume the errors are uncorrelated, but often their variances are not constant across 

individuals. This is known as the problem of heteroskedasticity (for "unequal scatter"); the usual assumption of 

constant error variance is referred to as homoskedasticity. Although the mean of the dependent variable might be a 

linear function of the regressors, the variance of the error terms might also depend on those same regressors, so that 

the observations might "fan out" in a scatter diagram.  
 

Approaches to Dealing with Heteroskedasticity 

 

. For known heteroskedasticity (e.g., grouped data with known group sizes), use weighted least squares (WLS) to 

obtain efficient unbiased estimates;  

 

. Test for heteroskedasticity of a special form using a squared residual regression;  

 

. Estimate the unknown heteroskedasticity parameters using this squared residual regression, then use the estimated 

variances in the WLS formula to get efficient  

estimates of regression coefficients (known as feasible WLS); or  

 

. Stick with the (inefficient) least squares estimators, but get estimates of standard errors which are correct under 

arbitrary heteroskedasticity.  
 

In this procedure, the "residualization" method is used to obtain weights that will reduce the effect of 

heteroskedastic values.  The method consists of four stages: 

 

Step 1. Perform an Ordinary Least Squares (OLS) regression and obtain the residuals and squared residuals where 

the residual is the difference between the observed dependent variable and the predicted dependent variable value 

for each case. 

 

Step 2. Regress the values of the squared residuals on the independent variables using OLS.  The F test for the 

model is an indication of heteroskedasticity in the data. 
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Step 3. Obtain the reciprocal of the square root of the absolute squared residuals.  These weights are then multiplied 

times all of the variables of the regression model. 

 

Step 4. Obtain the OLS regression of the weighted dependent variable on the weighted independent variables.  One 

can obtain the regression through the origin.  If elected, each variable's values are converted to deviations from their 

respective mean before the OLS analysis is performed. 

 

As an alternative, the user may use weights he or she has derived.  These should be similar to the reciprocal values 

obtained in step 3 above.  When these weights are used, they are multiplied times the values of each variable and 

step 4 above is completed. 

 

Shown below is the dialog box for the Weighted Least Squares Analysis and an analysis of the cansas.OS4 data file. 

 

 
 

Fig. 5.11  Weighted Least Squares Regression Dialog 

 
OLS REGRESSION RESULTS 

Dependent variable: jumps 

 

 

B WEIGHTS with   20 valid cases. 

 

Variables       weight        waist        pulse        chins       situps 

                -1.221       15.718       -0.453        1.947        0.728  

 

Variables              

              -366.967 

MEANS with   20 valid cases. 

 

Variables       weight        waist        pulse        chins       situps 

               178.600       35.400       56.100        9.450      145.550  

 

Variables              

                70.300  

 

 

VARIANCES with   20 valid cases. 

 

Variables       weight        waist        pulse        chins       situps 

               609.621       10.253       51.989       27.945     3914.576  
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Variables              

              2629.379  

 

 

STD. DEV.S with   20 valid cases. 

 

Variables       weight        waist        pulse        chins       situps 

                24.691        3.202        7.210        5.286       62.567  

 

Variables              

                51.277 

Dependent variable: jumps 

 

 

BETA WEIGHTS with   20 valid cases. 

 

Variables       weight        waist        pulse        chins       situps 

                -0.588        0.982       -0.064        0.201        0.888 

B STD.ERRORS with   20 valid cases. 

 

Variables       weight        waist        pulse        chins       situps 

                 0.704        6.246        1.236        2.243        0.205  

 

Variables              

               183.214  

 

 

B t-test VALUES with   20 valid cases. 

 

Variables       weight        waist        pulse        chins       situps 

                -1.734        2.517       -0.366        0.868        3.546  

 

Variables              

                -2.003  

 

 

B t VALUE PROBABILITIES with   20 valid cases. 

 

Variables       weight        waist        pulse        chins       situps 

                 0.105        0.025        0.720        0.400        0.003  

 

Variables              

                 0.065 

 

SSY =   49958.20, SSreg =   31793.74, SSres =   18164.46 

R2 = 0.6364, F =     4.90, D.F. = 5 14, Prob>F = 0.0084 

Standard Error of Estimate =    36.02 

 

REGRESSION OF SQUARED RESIDUALS ON INDEPENDENT VARIABLES 

Dependent variable: ResidSqr 

 

 

B WEIGHTS with   20 valid cases. 

 

Variables       weight        waist        pulse        chins       situps 

               -64.916      578.259      -50.564      124.826       16.375  

 

Variables              
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             -8694.402 

MEANS with   20 valid cases. 

 

Variables       weight        waist        pulse        chins       situps 

               178.600       35.400       56.100        9.450      145.550  

 

Variables              

               908.196  

 

 

VARIANCES with   20 valid cases. 

 

Variables       weight        waist        pulse        chins       situps 

               609.621       10.253       51.989       27.945     3914.576  

 

Variables              

           4354851.627  

 

 

STD. DEV.S with   20 valid cases. 

 

Variables       weight        waist        pulse        chins       situps 

                24.691        3.202        7.210        5.286       62.567  

 

Variables              

              2086.828 

Dependent variable: ResidSqr 

 

 

BETA WEIGHTS with   20 valid cases. 

 

Variables       weight        waist        pulse        chins       situps 

                -0.768        0.887       -0.175        0.316        0.491 

B STD.ERRORS with   20 valid cases. 

 

Variables       weight        waist        pulse        chins       situps 

                36.077      320.075       63.367      114.955       10.515  

 

Variables              

              9389.303  

 

 

B t-test VALUES with   20 valid cases. 

 

Variables       weight        waist        pulse        chins       situps 

                -1.799        1.807       -0.798        1.086        1.557  

 

Variables              

                -0.926  

 

 

B t VALUE PROBABILITIES with   20 valid cases. 

 

Variables       weight        waist        pulse        chins       situps 

                 0.094        0.092        0.438        0.296        0.142  

 

Variables              

                 0.370 

SSY = 82742180.90, SSreg = 35036253.36, SSres = 47705927.54 
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R2 = 0.4234, F =     2.06, D.F. = 5 14, Prob>F = 0.1323 

Standard Error of Estimate =  1845.96 

X versus Y Plot 

 

X := ResidSqr, Y := weight from file: 

C:\lazarus\Projects\LazStats\LazStatsData\cansas.LAZ 

 

Variable     Mean   Variance  Std.Dev. 

ResidSqr    908.20  4354851.63   2086.83 

weight      178.60    609.62     24.69 

Correlation := -0.2973, Slope :=    -0.00, Intercept :=   181.79 

Standard Error of Estimate :=    24.22 

Number of good cases := 20 

X versus Y Plot 

 

X := ResidSqr, Y := waist from file: 

C:\lazarus\Projects\LazStats\LazStatsData\cansas.LAZ 

 

Variable     Mean   Variance  Std.Dev. 

ResidSqr    908.20  4354851.63   2086.83 

waist        35.40     10.25      3.20 

Correlation := -0.2111, Slope :=    -0.00, Intercept :=    35.69 

Standard Error of Estimate :=     3.22 

Number of good cases := 20 

X versus Y Plot 

 

X := ResidSqr, Y := pulse from file: 

C:\lazarus\Projects\LazStats\LazStatsData\cansas.LAZ 

 

Variable     Mean   Variance  Std.Dev. 

ResidSqr    908.20  4354851.63   2086.83 

pulse        56.10     51.99      7.21 

Correlation := -0.0488, Slope :=    -0.00, Intercept :=    56.25 

Standard Error of Estimate :=     7.40 

Number of good cases := 20 

X versus Y Plot 

 

X := ResidSqr, Y := chins from file: 

C:\lazarus\Projects\LazStats\LazStatsData\cansas.LAZ 

 

Variable     Mean   Variance  Std.Dev. 

ResidSqr    908.20  4354851.63   2086.83 

chins         9.45     27.94      5.29 

Correlation := 0.4408, Slope :=     0.00, Intercept :=     8.44 

Standard Error of Estimate :=     4.88 

Number of good cases := 20 

X versus Y Plot 

 

X := ResidSqr, Y := situps from file: 

C:\lazarus\Projects\LazStats\LazStatsData\cansas.LAZ 

 

Variable     Mean   Variance  Std.Dev. 

ResidSqr    908.20  4354851.63   2086.83 

situps      145.55   3914.58     62.57 

Correlation := 0.4775, Slope :=     0.01, Intercept :=   132.55 

Standard Error of Estimate :=    56.48 

Number of good cases := 20 
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Fig. 5.12  Plot of Ordinary Least Squares Regression 

 

 
 

Fig. 5.13  Plot of Weighted Least Squares Regression 

2-Stage Least-Squares Regression 

 
 Two Stage Least Squares regression may be used in the situation where the errors of independent and 

dependent variables are known (or likely) to be correlated.  For example, the market price of a commodity and the 

demand for that commodity are non-recursive, that is, demand affects price and price affects demand.  Prediction 

variables are "explanatory" variables to explain variability of the dependent variable.  However, there may be other 

"instrumental" variables that predict one or more of these explanatory variables in which the errors are not 

correlated.  If we first predict the explanatory variables with these instrumental variables and use the predicted 

values, we reduce the correlation of the errors with the dependent variable. 

 

In this procedure, the user first selects the dependent variable of the study.  Next, the explanatory variables 

(predictors) are entered.  Finally, the instrumental variables AND the explanatory variables affected by these 

instrumental variables are entered into the instrumental variables list. 

 

The two stages of this procedure are performed as follows: 
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Stage 1.  The instrumental variables are identified as those in the instrumental list that are not in the explanatory list.  

The explanatory variables that are listed in both the explanatory and the instrumental lists are those for which 

predictions are to be obtained.  These predicted scores are referred to as "proxy" scores.  The predictions are 

obtained by regressing each explanatory variable listed in both lists with all of the remaining explanatory variables 

and instrumental variables.  The predicted scores are obtained and stored in the data grid with a "P_" appended to 

the beginning of the original predictor name. 

 

Stage 2.  Once the predicted values are obtained, an OLS regression is performed with the dependent variable 

regressed on the proxy variables and the other explanatory variables not predicted in the previous stage. 

 

In the following example, the cansas.LAZ file is analyzed.  The dependent variable is the height of individual jumps.  

The explanatory (predictor) variables are pulse rate, no. of chinups and no. of situps the individual completes.  These 

explanatory variables are thought to be related to the instrumental variables of weight and waist size.  In the dialog 

box for the analysis, the option has been selected to show the regression for each of the explanatory variables that 

produces the predicted variables to be used in the final analysis.  Results are shown below: 

 

 
 

Fig. 5.14  Two Stage Least Squares Regression Dialog 

 
FILE: C:\lazarus\Projects\LazStats\LazStatsData\cansas.LAZ 

 

Dependent := jumps 

Explanatory Variables: 

pulse 

chins 

situps 

Instrumental Variables: 

weight 

waist 

pulse 

chins 

situps 

Proxy Variables: 

P_pulse 

P_chins 

P_situps 

 

Analysis for P_pulse 

Dependent: pulse 

Independent:  
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weight 

waist 

chins 

situps 

Dependent variable: pulse 

 

 

B WEIGHTS with   20 valid cases. 

 

Variables       weight        waist        chins       situps              

                -0.069       -0.325       -0.084        0.007       79.673 

 

MEANS with   20 valid cases. 

 

Variables       weight        waist        chins       situps              

               178.600       35.400        9.450      145.550       56.100  

 

 

VARIANCES with   20 valid cases. 

 

Variables       weight        waist        chins       situps              

               609.621       10.253       27.945     3914.576       51.989  

 

 

STD. DEV.S with   20 valid cases. 

 

Variables       weight        waist        chins       situps              

                24.691        3.202        5.286       62.567        7.210 

Dependent variable: pulse 

 

 

BETA WEIGHTS with   20 valid cases. 

 

Variables       weight        waist        chins       situps 

                -0.235       -0.144       -0.062        0.059  

 

B STD.ERRORS with   20 valid cases. 

 

Variables       weight        waist        chins       situps              

                 0.146        1.301        0.468        0.043       32.257  

 

 

B t-test VALUES with   20 valid cases. 

 

Variables       weight        waist        chins       situps              

                -0.471       -0.249       -0.179        0.158        2.470  

 

 

B t VALUE PROBABILITIES with   20 valid cases. 

 

Variables       weight        waist        chins       situps              

                 0.644        0.806        0.860        0.876        0.026  

 

SSY =     987.80, SSreg =     139.18, SSres =     848.62 

R2 = 0.1409, F =     0.62, D.F. = 4 15, Prob>F = 0.6584 

Standard Error of Estimate =     7.52 

Analysis for P_chins 

Dependent: chins 

Independent:  

weight 

waist 

pulse 

situps 

Dependent variable: chins 

 

 

B WEIGHTS with   20 valid cases. 

 

Variables       weight        waist        pulse       situps              

                 0.045       -0.638       -0.026        0.047       18.641 

MEANS with   20 valid cases. 

 

Variables       weight        waist        pulse       situps              

               178.600       35.400       56.100      145.550        9.450  
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VARIANCES with   20 valid cases. 

 

Variables       weight        waist        pulse       situps              

               609.621       10.253       51.989     3914.576       27.945  

 

 

STD. DEV.S with   20 valid cases. 

 

Variables       weight        waist        pulse       situps              

                24.691        3.202        7.210       62.567        5.286  

 

Dependent variable: chins 

 

 

BETA WEIGHTS with   20 valid cases. 

 

Variables       weight        waist        pulse       situps 

                 0.208       -0.386       -0.035        0.557 

B STD.ERRORS with   20 valid cases. 

 

Variables       weight        waist        pulse       situps              

                 0.080        0.700        0.142        0.020       20.533  

 

 

B t-test VALUES with   20 valid cases. 

 

Variables       weight        waist        pulse       situps              

                 0.556       -0.911       -0.179        2.323        0.908  

 

 

B t VALUE PROBABILITIES with   20 valid cases. 

 

Variables       weight        waist        pulse       situps              

                 0.586        0.377        0.860        0.035        0.378  

 

SSY =     530.95, SSreg =     273.09, SSres =     257.86 

R2 = 0.5143, F =     3.97, D.F. = 4 15, Prob>F = 0.0216 

Standard Error of Estimate =     4.15 

 

Analysis for P_situps 

Dependent: situps 

Independent:  

weight 

waist 

pulse 

chins 

Dependent variable: situps 

 

 

B WEIGHTS with   20 valid cases. 

 

Variables       weight        waist        pulse        chins              

                 0.284       -9.200        0.246        5.624      353.506  

 

MEANS with   20 valid cases. 

 

Variables       weight        waist        pulse        chins              

               178.600       35.400       56.100        9.450      145.550  

 

 

VARIANCES with   20 valid cases. 

 

Variables       weight        waist        pulse        chins              

               609.621       10.253       51.989       27.945     3914.576  

 

 

STD. DEV.S with   20 valid cases. 

 

Variables       weight        waist        pulse        chins              

                24.691        3.202        7.210        5.286       62.567  

 

Dependent variable: situps 
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BETA WEIGHTS with   20 valid cases. 

 

Variables       weight        waist        pulse        chins 

                 0.112       -0.471        0.028        0.475 

B STD.ERRORS with   20 valid cases. 

 

Variables       weight        waist        pulse        chins              

                 0.883        7.492        1.555        2.421      211.726  

 

 

B t-test VALUES with   20 valid cases. 

 

Variables       weight        waist        pulse        chins              

                 0.322       -1.228        0.158        2.323        1.670  

 

 

B t VALUE PROBABILITIES with   20 valid cases. 

 

Variables       weight        waist        pulse        chins              

                 0.752        0.238        0.876        0.035        0.116 

SSY =   74376.95, SSreg =   43556.05, SSres =   30820.90 

R2 = 0.5856, F =     5.30, D.F. = 4 15, Prob>F = 0.0073 

Standard Error of Estimate =    45.33 

Dependent variable: jumps 

 

 

B WEIGHTS with   20 valid cases. 

 

Variables      P_pulse      P_chins     P_situps        chins 

                -3.794       11.381       -0.192      203.516 

MEANS with   20 valid cases. 

 

Variables      P_pulse      P_chins     P_situps        chins 

                56.100        9.450      145.550       70.300  

 

 

VARIANCES with   20 valid cases. 

 

Variables      P_pulse      P_chins     P_situps        chins 

                 7.325       14.373     2292.424     2629.379  

 

 

STD. DEV.S with   20 valid cases. 

 

Variables      P_pulse      P_chins     P_situps        chins 

                 2.706        3.791       47.879       51.277 

Dependent variable: jumps 

 

 

BETA WEIGHTS with   20 valid cases. 

 

Variables      P_pulse      P_chins     P_situps 

                -0.200        0.841       -0.179 

 

B STD.ERRORS with   20 valid cases. 

 

Variables      P_pulse      P_chins     P_situps        chins 

                 5.460        5.249        0.431      277.262  

 

 

B t-test VALUES with   20 valid cases. 

 

Variables      P_pulse      P_chins     P_situps        chins 

                -0.695        2.168       -0.445        0.734  

 

 

B t VALUE PROBABILITIES with   20 valid cases. 

 

Variables      P_pulse      P_chins     P_situps        chins 

                 0.497        0.046        0.662        0.474 

SSY =   49958.20, SSreg =   17431.81, SSres =   32526.39 

R2 = 0.3489, F =     2.86, D.F. = 3 16, Prob>F = 0.0698 
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Standard Error of Estimate =    45.09 

 

Non-Linear Regression as Implemented in LazStats 

(Contributed From John Pezzullo's Non-Linear Regression page. http://members.aol.com/johnp71/nonlin.html ) 

 

Background Info (just what is nonlinear curve-fitting, anyway?):  

 

Simple linear curve fitting deals with functions that are linear in the parameters, even though they may be nonlinear 

in the variables. For example, a parabola y=a+b*x+c*x*x is a nonlinear function of x (because of the x-squared 

term), but fitting a parabola to a set of data is a relatively simple linear curve-fitting problem because the parameters 

enter into the formula as simple multipliers of terms that are added together. Another example of a linear curve-

fitting problem is y= a+b*Log(x)+c/x; the terms involve nonlinear functions of the independent variable x, but the 

parameters enter into the formula in a simple, linear way.  

 

Unfortunately, many functions that arise in real world situations are nonlinear in the parameters, like the curve for 

exponential decay y=a*Exp(-b*x), where b is "wrapped up" inside the exponential function. Some nonlinear 

functions can be linearized by transforming the independent and/or dependent variables. The exponential decay 

curve, for example, can be linearized by taking logarithms: Log(y)=a'-b*x . The a' parameter in this new equation is 

the logarithm of a in the original equation,so once a' has been determined by a simple linear curve-fit, we can just 

take its antilog to get a.  

 

But we often encounter functions that cannot be linearized by any such tricks, a simple example being exponential 

decay that levels off to some unknown value: y=a*Exp(-b*x)+c. Applying a logarithmic transformation in this case 

produces Log(y-c)=a'-b*x. This linearizes b, but now c appears inside the logarithm; either way, we're stuck with an 

intrinsically nonlinear parameter estimation problem, which is considerably more difficult than linear curve-fitting. 

That's the situation this web page was designed to handle.  

 

For a more in-depth treatment of this topic, check out Dr. Harvey Motulsky's new web site: Curvefit.com -- a 

complete guide to nonlinear regression. Most of the information here is excerpted from Analyzing Data with 

GraphPad Prism, a book that accompanies the program GraphPad Prism. You can download this book as a pdf file.  

 

Techie-stuff (for those who might be interested):  

 

This procedure involves expanding the function to be fitted in a Taylor series around current estimates of the 

parameters, retaining first-order (linear) terms, and solving the resulting linear system for incremental changes to the 

parameters. The program computes finite-difference approximations to the required partial derivatives, then uses a 

simple elimination algorithm to invert and solve the simultaneous equations. Central-limit estimates of parameter 

standard errors are obtained from the diagonal terms of the inverse of the normal equations matrix. The covariance 

matrix is computed by multiplying each term of the inverse normal matrix by the weighted error-variance. It is used 

to estimate parameter error correlations and to compute confidence bands around the fitted curve. These show the 

uncertainty in the fitted curve arising from sampling errors in the estimated parameters, and do not include the 

effects of errors in the independent and dependent variables. The page also computes a generalized correlation 

coefficient, defined as the square root of the fraction of total y variance explainable by the fitted function.  

 

Unequal weighting is accomplished by specifying the standard error associated with the y variable. Constant errors, 

proportional errors, or Poisson (square root) errors can be specified by a menu, and don't have to be entered with the 

data. Standard errors can also be entered along with the x and y variables. Finally, replicate y measurements can be 

entered; the program will compute the average and standard error of the mean.  

 

Also available are a number of simple variable transformations (log, reciprocal, square root), which might simplify 

the function to be fitted and improve the convergence, stability and precision of the iterative algorithm. If a 

transformation is applied to the y variable, the program will adjust the weights appropriately.  

 

The page also fits least-absolute-value curves by applying an iterative reweighting scheme by which each point is 

given a standard error equal to the distance of that point from the fitted curve. An option allows differential 

weighting of above-curve points vs. below-curve points to achieve a specified split of points above and below the 

curve (a percentile curve fit).  
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No special goal-seeking methods, precision-preserving techniques (such as pivoting), convergence-acceleration, or 

iteration-stabilizing techniques (other than a simple, user-specified fractional adjustment), are used. This method 

may not succeed with extremely ill-conditioned systems, but it should work with most practical problems that arise 

in real-world situations.  

 

As an example, I have created a "parabola" function data set labeled parabola.TEX.  To generate this file I used the 

equation y = a + b * x + c * x * x.  I let a = 0, b = 5 and c = 2 for the parameters and used a sequence of x values for 

the independent variables in the data file that was generated.  To test the non-linear fit program, I initiated the 

procedure and entered the values shown below: 

 

Fig. 5.15  Non Linear Regression Dialog 

 

You can see that y is the dependent variable and x is the independent variable.  Values of 1 have been entered for the 

initial estimates of a, b and c.  The equation model was selected by clicking the parabola model from the drop-down 

models box.  I could have entered the same equation by clicking on the equation box and typing the equation into 

that box or clicking parameters, math functions and variables from the drop-down boxes on the right side of the 

form.  Notice that I selected to plot the x versus y values and also the predicted versus observed y values.  I also 

chose to save the predicted scores and residuals (y - predicted y.)   

 

The printed output shown below gives the model selected followed by the individual data points observed, their 

predicted scores, the residual, the standard error of estimate of the predicted score and the 95% confidence interval 

of the predicted score.  These are followed by the obtained correlation coefficient and its square, root mean square of 

the y scores, the parameter estimates with their confidence limits and t probability for testing the significance of 

difference from zero. 

 
 
y = a  + b * x1 + c * x1 * x1  

     x4        y         yc       y-yc       SEest       YcLo       YcHi   

    0.39800   2.31000   2.30863   0.00137    0.00161    2.30582    2.31143  

   -1.19700  -3.13000  -3.12160  -0.00840    0.00251   -3.12597   -3.11723  

   -0.48600  -1.95000  -1.95878   0.00878    0.00195   -1.96218   -1.95538  

   -1.90800  -2.26000  -2.26113   0.00113    0.00522   -2.27020   -2.25205  

   -0.84100  -2.79000  -2.79228   0.00228    0.00206   -2.79586   -2.78871  

   -0.30100  -1.32000  -1.32450   0.00450    0.00192   -1.32784   -1.32115  
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    0.69600   4.44000   4.45208  -0.01208    0.00168    4.44917    4.45500  

    1.11600   8.08000   8.07654   0.00346    0.00264    8.07195    8.08112  

    0.47900   2.86000   2.85607   0.00393    0.00159    2.85330    2.85884  

    1.09900   7.92000   7.91612   0.00388    0.00258    7.91164    7.92061  

   -0.94400  -2.94000  -2.93971  -0.00029    0.00214   -2.94343   -2.93600  

   -0.21800  -0.99000  -0.99541   0.00541    0.00190   -0.99872   -0.99211  

    0.81000   5.37000   5.36605   0.00395    0.00183    5.36288    5.36923  

   -0.06200  -0.31000  -0.30228  -0.00772    0.00185   -0.30549   -0.29907  

    0.67200   4.26000   4.26629  -0.00629    0.00165    4.26342    4.26917  

   -0.01900  -0.10000  -0.09410  -0.00590    0.00183   -0.09728   -0.09093  

    0.00100   0.01000   0.00525   0.00475    0.00182    0.00209    0.00841  

    0.01600   0.08000   0.08081  -0.00081    0.00181    0.07766    0.08396  

    1.19900   8.88000   8.87635   0.00365    0.00295    8.87122    8.88148  

    0.98000   6.82000   6.82561  -0.00561    0.00221    6.82177    6.82945  

 

Corr. Coeff. =    1.00000  R2 =    1.00000 

RMS Error =    5.99831, d.f. = 17  SSq =  611.65460 

 

Parameter Estimates ... 

p1=    0.00024  +/-     0.00182  p=    0.89626 

p2=    5.00349  +/-     0.00171  p=    0.00000 

p3=    2.00120  +/-     0.00170  p=    0.00000 

 

Covariance Matrix Terms and Error-Correlations... 

B(1,1)=             0.00000; r=   1.00000 

B(1,2)=B(2,1)=     -0.00000; r=  -0.28318 

B(1,3)=B(3,1)=     -0.00000; r=  -0.67166 

B(2,2)=             0.00000; r=   1.00000 

B(2,3)=B(3,2)=      0.00000; r=   0.32845 

B(3,3)=             0.00000; r=   1.00000 

X versus Y Plot 

 

X = Y, Y = Y' from file: C:\Documents and Settings\Owner\My 

Documents\Projects\CLanguage\data\parabola.LAZ 

 

Variable     Mean   Variance  Std.Dev. 

Y             1.76     16.29      4.04 

Y'            1.76     16.29      4.04 

Correlation = 1.0000, Slope =     1.00, Intercept =     0.00 

Standard Error of Estimate =     0.01 

Number of good cases = 20 
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Chapter 6. Analysis of Variance 
 

Theory of Analysis of Variance 

 
While the “Student” t-test provides a powerful method for comparing sample means for testing differences 

between population means, when more than two groups are to be compared, the probability of finding at least one 
comparison significant by chance sampling error becomes greater than the alpha level (rate of Type I error) set by 
the investigator.  Another method, the method of Analysis of Variance, provides a means of testing differences 
among more than two groups yet retain the overall probability level of alpha selected by the researcher.  Your 
LazStats4 package contains a variety of analysis of variance procedures to handle various research designs 
encountered in evaluation research.  These various research designs require different assumptions by the researcher 
in order for the statistical tests to be justified.  Fundamental to nearly all research designs is the assumption that 
random sampling errors produce normally distributed score distributions and that experimental effects result in 
changes to the mean, not the variance or shape of score distributions.  A second common assumption to most 
designs using ANOVA is that the sub-populations sampled have equal score variances - this is the assumption of 
homogeneity of variance.  A third common assumption is that the populations sampled have been randomly sampled 
and are very large (infinite) in size.  A fourth assumption of some research designs where individual subjects or 
units of observation are repeatedly measured is that the correlation among these repeated measures is the same for 
populations sampled - this is called the assumption of homogeneity of covariance. 

 
When we say we are "analyzing" variance we are essentially talking about explaining the variability of our 

values around the grand mean of all values.  This "Total Sum of Squares" is just the numerator of our formula for 
variance.  When the values have been grouped, for example into experimental and control groups, then each group 
also has a group mean.  We can also calculate the variance of the scores within each of these groups.  The variability 
of these group means around the grand mean of all values is one source of variability.  The variability of the scores 
within the groups is another source of variability.  The ratio of the variability of group means to the variability of 
within-group values is an indicator of how much our total variance is due to differences among our groups.  
Symbolically, we have "partioned" our total variability into two parts: variability among the groups and variability 
within the groups.  We sometimes write this as 

SST = SSB + SSW        (6.1) 
That is, the total sum of squares equals the sum of squares between groups plus the sum of squares within groups.  
The sums of squares are the numerators of variance estimates.  The ratio of the SSB to the SSW forms our F test 
statistic.  Later we will examine how we might also analyze the variability of scores using a linear equation. 
 

The Completely Randomized Design 

Introduction 

 

 Educational research often involves the hypothesis that means of scores obtained in two or more groups of 
subjects do not differ beyond that which might be expected due to random sampling variation.  The scores obtained 
on the subjects are usually some measure representing relative amounts of some attribute on a dependent variable.  
The groups may represent different "treatment" levels to which subjects have been randomly assigned or they may 
represent random samples from some sub-populations of subjects that differ on some other attribute of interest.  This 
treatment or attribute is usually denoted as the independent variable. 

A Graphic Representation 

 

 To assist in understanding the research design that examines the effects of one independent variable (Factor 
A) on a dependent variable, the following representation is utilized: 

   ____________________________________________________ 

 

                        TREATMENT GROUP 

  1  2  3  4  5 

     ____________________________________________________ 
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  Y11  Y12  Y13  Y14  Y15 

  Y21  Y22  Y23  Y24  Y25 

  .  .  .  .  . 

  .  .  .  .  . 

  Yn1  Yn2  Yn3  Yn4  Yn5 

     ____________________________________________________ 

 

 In the above Fig., each Y score represents the value of the dependent variable obtained for subjects 1, 2,...,n 
in groups 1, 2, 3, 4, and 5. 
 

Null Hypothesis of the Design 

 

 When the researcher utilizes the above design in his or her study, the typical null hypothesis may be stated 
verbally as "the population means of all groups are equal".  Symbolically, this is also written as 
 

H0: μ1 = μ2 = ... = μk         (6.2) 

 

where k is the number of treatment levels or groups. 
 

Summary of Data Analysis 

 

 The completely randomized design (or one-way analysis of variance design) depicted above requires the 
researcher to collect the dependent variable scores for each of the subjects in the k groups.  These data are then 
typically analyzed by use of a computer program and summarized in a summary table similar to that below: 
 
____________________________________________________________ 

   SOURCE     DF           SS              MS          F 

____________________________________________________________ 

                        k  _    _ 2 

   Groups    k-1      Σ nj(Yj - Y)        SS / k      MSg 

                       j=1                            --- 

                                                       MSe 

                   k   nj       _  2 

   Error     N-k   Σ   Σ (Yij - Yj)      SS / (N-k)   

                  j=1 i=1 

 

                   k   nj       _ 2 

   Total     N-1   Σ   Σ (Yij - Y) 

                  j=1 i=1 

____________________________________________________________ 

 

 where Yij is the score for subject i in group j, 

                     _ 

       Yj is the mean of scores in group j, 

                   _ 

                  Y is the overall mean of scores for all subjects, 

 

                   nj is the number of subjects in group j, and 

 

                  N is the total number of subjects across all groups. 
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Model and Assumptions 

 

 Use of the above research design assumes the following: 
 

1.   Variance of scores in the populations represented by groups 1,2,...,k are equal. 

 

2.   Error scores (which are the source of variability within the groups) are normally distributed. 

 

3.   Subjects are randomly assigned to treatment groups or randomly selected from sub-populations represented by 

the groups. 

 

 The model employed in the above design is 
 

Yij = μ + μ j + eij         (6.3) 

 

 where μ is the population mean of all scores, μ j is the effect of being in group j, and eij is the residual 

(error) for subject i in group j.  In this model, it is assumed that the sum of the treatment effects ( αj) equals zero. 

 

Fixed and Random Effects 

 

 In the previous section we introduced the analysis of variance for a single independent variable.  In our 

discussion we indicated that treatment levels were usually established by the researcher.  Those levels of treatment 

often are selected to represent specific intervals of a measurement on the independent variable, for example, amount 

of study time, level of drug dosage, time spent on a task, etc.  The independent variable in many one-way analyses 

of variance may also represent classifications of objects or subjects such as political party, gender, grade level, or 

country of origin.  We suggest more caution in interpretation of outcomes using classification variables since, in 

these cases, random assignment of subjects from a single population is usually impossible. 

 

 There is another situation for analysis of variance.  That situation is where the researcher randomly selects 

levels of the independent variable (or works with objects that have random levels of an independent variable).  For 

example, a researcher may wish to examine the effect of "amount of TV viewing" on student achievement.  A 

random sample of students from a population might be drawn and those subjects tested.  The subjects would also be 

asked to report the number of hours on the average that they watch TV during a week's time.  If the analysis of 

variance is used, the variable "TV time" would be a random variable - the investigator has not assigned hour levels.  

If the experiment is repeated, the next sample of subjects would most likely represent different levels of TV time, 

thus the levels randomly fluctuate from sample to sample.  For the one-way analysis of variance with the random 

effects model, the parameters estimated are the same as in the fixed effects model.  For the one-way analysis of 

variance then, the analysis for the random-effects model is exactly the same as for the fixed-effects model (this will 

NOT be true for two-way and other higher level designs).  An additional assumption of the random effects model is 

that the treatment effects (α) are normally distributed with mean 0 and variance σe
2.  You may recognize that, if 

both dependent and independent variables are normally distributed and continuous, that the product-moment 

correlation may be an alternative method of analyzing data of the random-effects model. 

Analysis of Variance - The Two-way, Fixed-Effects Design 

 

 A researcher may be interested in examining the effects of two (or more) independent variables on a given 

dependent variable at the same time.  For example, a teacher may be interested in comparing the effects of three 

types of instruction, e.g. teacher lecture, small group discussion, and self instruction, on student achievement under 

two other conditions, e.g. students given a pretest and students not given a pretest.  There is a possibility that both of 
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these variables contribute to differences in student achievement.  In addition, there is the possibility that method of 

instruction "interacts with" pre-testing conditions.  For example, it might be suspected that use of a pretest with 

teacher lecture method is better than no pretest with teacher lecture but that such a difference would not be observed 

for the other two methods of instruction.  The multi-factor ANOVA designs have the advantage of being able to 

examine not only the "main" effects of variables hypothesized to affect the dependent variable but also to be able to 

examine the interaction effects of those variables on the dependent variable. 

 

 The data may be conveniently depicted as a rectangle with the levels of one variable on the horizontal axis 

and the levels of the second variable on the vertical axis.  The intersection of each row and column level is a 

treatment "cell" consisting of njk subjects receiving that combination of treatments.  The table below gives the 

symbolic representation of scores in the two-way design: 

 

     METHOD OF INSTRUCTION 

     Lecture Group Self 

---------------------------    

     X111=5 X112=9 X113= 5 

   Pretest 

     X211=6 X212=7 X213=12 

 

     X311=4 X312=6 X313= 8 

Pretest Condition        --------------------------- 

     X121=10 X122=6 X123= 4 

   No 

   Pretest X221=12 X222=8 X223= 8 

 

     X321= 8 X322=9 X323= 5 

                         ---------------------------- 

 

 Using the above data it is possible to consider three seperate one-way ANOVA analyses: 

 1. An ANOVA of the three methods of instruction, 

 2. An ANOVA of the two pretesting conditions, and 

 3. An ANOVA of the 6 cells (treatment combinations). 

 

 The two-way ANOVA procedure yields all three in one analysis and provides greater sensitivity for each 

since the denominator of the F statistic will have the effects of the other two sources of variance already removed.  

The Summary table for the two-way ANOVA contains: 

------------------------------------------------------------------------------------------------------------------------  

Source D.F.   Sum of Squares   F        Parameters 

                Estimated 

------------------------------------------------------------------------------------------------------------------------  

Rows  R-1  R     _      _     2                                                    2      2 

    Σnj.(X.j.-X... )  MSR/MS e  σe +σα
 

    j=1 

 

Columns C-1  C       _      _     2                        2      2 

    Σ n.k(X..k-X...)  MSC/MSß  σe + σβ
 

               k=1 

 

Row x Col (R-1)(C-1) R  C _     _      _       _    2                  2          2 

    Σ Σ(X.jk-X.j.-X..k+X...)     σe   +   σαβ
 

              j=1k=1 
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       MSRC/MSe 

 

Error          R  C 

  Σ  Σ(njk-1) R  C  njk        _      2       2 

              j=1k=1  Σ  Σ  Σ (Xijk-X.jk)    σ 

              j=1 k=1i=1 

 

 

Total N - 1                 R  C  njk       _    2 

    Σ  Σ  Σ (Xijk-X...) 

              j=1 k=1i=1 

----------------------------------------------------------------------------------------------------------------------------- - 

 

  where Xijk is the score for individual i in Row j and column k, 

  _ 

  X.j. is the mean of row  j, 

  _ 

  X..k is the mean of column k, 

  _ 

  X.jk is the mean of the cell for row j and column k, 

  _ 

  X... is the overall (grand) mean. 

 
 As before, computational formulas may be developed from the defining formulas obtained from 

partitioning the total sum of squared deviations about the grand mean: 

 

 
                R  C  njk           2 

     SST = Σ  Σ  Σ Xijk - T.../N       (6.4) 

            j=1k=1i=1 

 

                R   2            2 

     SSR = Σ T.j./nj. - T.../N       (6.5) 

               j=1 

 

                C   2              2 

     SSC = Σ T..k/n.k - T.../N       (6.6) 

              k=1 

 

                  R  C   2                                   2 

    SSRC = Σ  Σ T.jk/njk - SSR - SSC - T.../N     (6.7) 

                j=1k=1 

 

           R  C  njk  2       R  C   2 

           Σ  Σ  Σ  Xijk -  Σ  Σ  T.jk / njk      (6.8) 

          j=1k=1i=1        j=1k=1      

 
 where T... is the total of all scores, 
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 T.jk is the total of the scores in a cell defined by the j row and k column, 

 

 T.j. is the total of the scores in the jth row, 

 

 T..k is the total of the scores in the kth column, 

 

 N is the total number of scores, 

 

 nj. is the number of scores in the jth row, 

 

 n.k is the number of scores in the kth column, 

 

 njk is the number of scores in the cell of the jth row and kth column. 

 

 In completing a two-way ANOVA, the researcher should attempt to have the same number of subjects in 

each group.  If the ratio of any two columns is the same accross rows then the cell sizes are proportional and the 

analysis is still legitimate.  If cell sizes are neither equal nor proportional, then the total sum of squares does not 

equal the sum of squares for rows, columns, interaction and error and the F tests do not represent independent tests 

of significance. 

Stating the Hypotheses 

 

 The individual score of a subject (Xijk) may be considered to be the linear composite of the effect of the 

row level (αj), the effect of the column (βk), the interaction effect of row and column combined (αβjk), the overall 

mean and  random error, that is 

 

 Xijk = μ + αj + βk +  αβjk
  +  eijk      (6.9) 

 

 The null hypotheses for the main effects therefore may be stated either as 

 

 Ho: μ1. = μ2. = ... = μj. = ... μR. for all rows,     (6.10) 

 

 or Ho: α1 ... = αj = ...  αR for all rows, and     (6.11) 

 

 Ho: μ.1 = ... = μ.k = ... = μ.C for all columns,    (6.12) 

 

 or Ho: ß1 = ... = ßk = ... = ßC for all columns, and    (6.13) 

 

 Ho: (μjk-μj.-μ.k+μ..) for all row and column combinations,   (6.14) 

 

 or Ho: αß11 = ... = αßjk = ... = αßRC for interactions.    (6.15) 

 

                                 R              C                   R C 

Again, we note that Σ αj. = 0,  Σ ß.k = 0 and Σ Σαßjk = 0.    (6.16) 

                              j=1           k=1                j=1k=1 
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Interpreting Interactions 

 

 One may examine the means of cells in a two-way ANOVA using a plot such as illustrated in the Fig. 

below for our example of the teacher's research: 

 
    Plot of Cell Means 

Achievement Score 

12 

11 

10   o 

 9 

 8      o   x 

 7      x 

 6         o 

 5   x 

 4 

 3 

  ---------------------------------------------------------- 

  Lecture  Group  Self Instruction 

 

 x = Pretest,         o = No Pretest 

 

 If lines are used to connect the o group means and lines are used to connect the x group means, one can see 

that the lines "cross". 

 If the lines for the pretest and no pretest levels are parallel across levels of the other factor, no interaction 

exists.  When lines actually cross in the plot, this is called ordinal interaction.  If the lines would cross if projected 

beyond current treatment levels, this is called disordinal interaction.  In either case, the implication of interaction is 

that a particular combination of both treatments effects the dependent variable beyond the main effects alone.  For 

example, if the interaction above is judged significant, then we cannot say that method 1 is better than method 3 of 

teaching without also specifying whether or not a pretest were used! 

 

 Note in the above interaction plot that the average of the three teaching method means are about the same 

for both pretest and no pretest conditions.  This would indicate no main effect for the column variable pretest-no 

pretest.  Similarly, the two means for each teaching method average about the same for each teaching method.  This 

would indicate little effect of the variable teaching method (row).  Your plot can graphically present effects due to 

the main variables as well as there interaction! 

 

Random Effects Models 

 

 The two-way ANOVA design discussed to this point has assumed both factors contain fixed levels of 

treatment such that if the experiment was repeated numerous times, the levels would always be the same.  If one or 

both of the factors represent random variables, that is, variables which would contain random levels upon 

replications of the experiment, then the expected values of the MSrows, MScolumns,  and    MSinteraction differ 

from that of the fixed-effects model.  Presented below is a summary of the expected values for the two-way design 

when both variables are fixed, one variable random, and both variables random. 
 

Both Row and Column Variables Fixed 

 

Source    Expected MS   Calculated F-Ratio 

---------------------------------------------------------------------------------------------------------------------  
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Row    σ
2
e    +   nj.σ

2
α    MSR / MSe 

     

Column    σ
2
e
   + n.k σ

2

β    MSC / MSe 

    

Interaction   σ
2

e
  +    njkσ

2
αβ    MSRC / MSe 

      

Error    σ
2

e 

------------------------------------------------------------------------------------------------- ----------------------- 

 

Rows Fixed, Columns Random 

------------------------------------------------------------------------------------------------------------------------  

Source     Expected MS  Calculated F-Ratio 

------------------------------------------------------------------------------------------------------------------------  

                     

Row    σ
2
e  +   n..σ

2
αβ +   nj σ

2

α   MSR / MSRC 

                                    

Column    σ
2
e  +   n.k σ

2
β    MSC / MSe 

             

Interaction                      σ
2
e  +  n..σαβ        MSRC / MSe 

      

Error    σ
2
e 

----------------------------------------------------------------------------------------------------------------------  

 

 

Row Random, Column Random 

----------------------------------------------------------------------------------------------------------------------  

Source    Expected MS   Calculated F-Ratio 

----------------------------------------------------------------------------------------------------------------------  

 

Row   σ
2

e 
 +  n..σ

2
αβ +  n.jσ

2
α   MSR / MSRC 

 

Column   σ
2

e 
 + n..σ

2
αβ +  nk.σ

2
β   MSC / MSRC 

 

Interaction  σ
2

e 
 + n..σ

2
αβ    MSRC / MSe 

 

Error   σ
2

e 
 

---------------------------------------------------------------------------------------------------------------------  

One Between, One Repeated Design 

Introduction 

 

A common research design in education involves repeated measurements of several groups of subjects.  For 
example, a pre- and post test administered to students in experimental and control courses may be considered a 
mixed design with one between subjects factor and one within subjects (repeated measures) factor.  We might 
hypothesize that the means of the pretest equals the posttest, hypothesize that the experimental and control group 
means are equal and hypothesize that the change from pretest to post-test is the same for the two groups. Tests for 
these hypotheses use the F statistic.  
 

As another example, suppose we are interested in the teacher evaluations given by three groups of 
administrators before and after three different teacher-evaluation training programs.  All administrators are provided 
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identical information on a sample of teachers including level and content of courses taught, school characteristics, 
community and student characteristics, and teacher characteristics such as degree, years experience, professional 
memberships, etc. plus a videotape of teaching excerpts.  Each subject reviews all information and makes teacher 
ratings.  The subjects are then randomly assigned to the three treatments: (1) a program on teacher evaluation which 
stresses the motivational aspects, (b) a program which stresses the teacher improvement aspect and (c) a program 
which stresses the reward aspect.  Following these programs, each subject again evaluates the same or parallel 
teachers.  The hypotheses tested would be that the mean teacher evaluations of each experimental group are equal, 
the mean evaluations prior to programs equal mean evaluations following the programs, and the change in mean 
teacher evaluations from pre to post program time are equal. 

The Research Design 

       

 The Fig. below presents the schema for the mixed between and within factors design.  Note that the 
different subjects in each "A" treatment group are repeatedly measured under each of the "B" treatment conditions.  
Our sample size is n subjects in each of M groups and the number of treatments is L. 
 

 The main hypotheses to be tested are 
 
   H0: μ1. = μ2. = ... = μM.  (all A levels are equal). 

   H0: μ.1 = μ.2 = ... = μ.L  (all B levels are equal). 

   H0: μ11 = μjk = ... = μML  (all AB cells are equal). 
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          ___________________________________________ 

                B FACTOR TREATMENT LEVEL 

          ________________________________________________ 

             1     2     3     4 .......... L         Mean 

          ________________________________________________ 

                                                       _ 

A            X111  X112  X113  X114 ....... X11L       X11. 

                                                       _ 

F            X211  X212  X213  X214........ X21L       X21. 

A 

C            .     .     .     .            .          _   

T            .     .     .     .            .          X.1. 

O 

R                                                      _ 

             Xi11  Xi12  Xi13  Xi14........ Xi1L       Xi1. 

G 

R            .     .     .     .            .          . 

O            .     .     .     .            .          . 

U                                                      _ 

P            Xn11  Xn12  Xn13  Xn14........ Xn1L       Xn1. 

          ________________________________________________ 

1            _     _     _     _            _          _ 

  Mean       X.11  X.12  X.13  X.14........ X.1L       X.1. 

__________________________________________________________ 

                                                       _ 

             X121  X122  X123  X124........ X12L       X12. 

                                                       _ 

             X221  X222  X223  X224........ X22L       X22. 

 
G            .     .     .     .            .          _ 

R            .     .     .     .            .          X.2. 

O    

U                                                      _ 

P            Xi21  Xi22  Xi23  Xi24........ Xi2L       Xi2. 

 
2            .     .     .     .            .          . 

             .     .     .     .            .          . 

                                                       _ 

             Xn21  Xn22  Xn23  Xn24........ Xn2L       Xn2. 

          ________________________________________________ 

 
             _     _     _     _            _          _ 

  Mean       X.21  X.22  X.23  X.24........ X.2L       X.2. 

 
__________________________________________________________ 

             _     _     _     _            _          _ 

Col. Means   X..1  X..2  X..3  X..4........ X..L       X... 

 

 

 

 

Theoretical Model 
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 The theoretical model for a subject i's score X from group j in Factor A on treatment k from factor B may 
be written 
 

 Xijk = μ + α j + ßk + π i(j) 
+  ßjk + ß πki(j)

 + ei(jk)    (6.17) 

 where μ is the population mean of the scores, 
  αj is the effect of treatment j in Factor A, 

 ßk is the effect of treatment k in Factor B, 

 πi is the effect of person i, 

 αßjk is the interaction of Factor A treatment j and treatment level k in Factor B, 

ßπ ki(j) is the interaction of subject i and B treatment k in the jth treatment group of A, 

 and ei(jk) is the error for person i in treatment j of Factor A and treatment k of Factor B. 

 

 In an experiment, we are usually interested in estimating the effect size of each treatment in each factor.  
We may also be interested in knowing whether or not there are significant differences among the subjects, and 
whether or not different subjects react differently to various treatments. 
 

 

Assumptions 

 

 As in most ANOVA designs, we make a number of assumptions.  For the mixed factors design these are: 
 
 1. The sum of treatment effects (αj) is equal to zero, 

 2. The sum of treatment effects (ßk) is equal to zero, 

 3. The sum of person effects (πi(j)) is equal to zero, 

 4. The sum of αßjk interaction effects is equal to zero, 

 5. The sum of ßαki(j) interaction effects is equal to zero, 

 6. The sum of treatment x person interaction effects  

  within levels of A ( ßπki(j) ) is zero, 

 7. The errors (ei(jk)) are normally distributed with mean zero, 

 8. The variance of errors in each A treatment (αj) are equal,  

 9. The variance of errors in each B treatment (βk) are equal, 

 10. The covariances among the treatments (COVpq(j) p<>q p,q=1..L)  

  within j levels of A are all equal. 

 

 The last assumption, equal covariances, means that if we were to transform scores within treatments to z 
scores, the correlations among the scores between any two treatments would all be equal in the population.  You will 
also note that the denominator of the F ratios for testing differences among A treatment means is the pooled variance 
among subject means within groups as in a one-way ANOVA and the denominator of the F statistic for the Factors 
of B (the repeated measures) and the AxB interaction F statistic is the variance due to  the pooled treatment by 
subjects interaction found in the Treatments by Subjects design. 
 

Summary Table 

 

 The AxS ANOVA Summary table is often presented as follows: 
____________________________________________________________________________ 
SOURCE         D.F.           SS                        MS                F 
____________________________________________________________________________ 
 

                        M   n                   2 
Between       Mn-1     Σ   Σ  L(Xij.-X...) 

Subjects               j=1 i=1 
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____________________________________________________________________________ 

 

                                M _     _    2 
   A           M-1       nLΣ(X.j.-X...)           SSA/(M-1)      MSA/MSSwG 

                             j=1 

 

                        M    n      _      _    2 

   Subjects   M(n-1)   Σ     Σ  L(Xij.-X.j.)        SSSwG/[M(n-1)] 

   within Groups      j=1 i=1 

 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________________ __ _ _ _ _ 
 

                          M   L    n            _    2 
Within        Mn(L-1)    Σ    Σ    Σ (Xijk-X.jk) 

Subjects                            j=1 k=1 i=1 

____________________________________________________________________________ 

 

                                  L   _       _    2 
   B          L-1         nMΣ (X..k-X...)              SSB/(L-1)  MSB/MSBxSwG 

                               k=1 

 

                              M  L _       _      _      _    2 
   AxB     (M-1)(L-1)    nΣ  Σ(X.jk-X..k-X.j.+X...)     SSAxS/[(M-1)(L-1)] 

                          j=1 k=1 

 

                          M 
   BxS      M(n-1(L-1)   ΣSSBS(j)                     SSBxSwG/[M(n-1)(L-1)] 

   within Groups        j=1 

 

_____________________________________________________________________________ 
 

                          M  L   n              _   2 
Total        nML-1        Σ   Σ   Σ (Xijk - X..) 

                                     j=1 k=1 i=1 

 

_____________________________________________________________________________ 
 

Population Parameters Estimated 

                                                                     

 

The population mean of all scores (μ) is estimated by the overall mean.  The mean squares provide 

estimates as follows: 

 

MSA       estimates  σe
2
    + Mσπ

2
 + Mnσα

2
   

MSSwG     estimates  σe
2
    + Mσπ

2
 

 
MSB       estimates σe

2
    + σβπ

2

  + Mnσ
2

β 

                             
   MSAB      estimates σe

2
   + σβπ

2

  + nσ
2

αβ 

                             
       MSBxSwG   estimates σe

2
   + σβπ

2
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Two Factor Repeated Measures Analysis 

 

 Repeated measures designs have the advantage that the error terms are typically smaller that designs using 

independent groups of observations.  This was true for the Student t-test using matched or correlated scores.  On the 

down-side, repeated measures on the same objects pose a special problem, particularly when the objects are human 

subjects.  The main problem is "practice" or "learning" effects that may be greater for one treatment level than 

another.  These effects are completely confounded with the actual treatment effects.  While random or counter-

balanced assignment of the treatments may reduce the cumulative effects to some degree, it does not remove the 

effects specific to a given treatment.  It is also assumed that the covariance matrices are equal among the treatment 

levels.  Users of these designs with human subjects should be careful to minimize the practice effects.  This can 

sometimes be done by having subjects do tasks that are similar to those in the actual experiment before beginning 

trials of the experiment. 

 

Nested Factors Analysis Of Variance Design 

The Research Design 

 

 In the Nested ANOVA design, one factor (B) is completely nested within levels of another factor (A).  
Thus unlike the AxB Fixed Effects ANOVA in which all levels of B are crossed with all levels of A, each level of B 
is found in only one level of A in the nested design.  The design may be graphically depicted as below: 

_________________________________________________________ 
A Factor |  Treatment 1    |  Treatment j |  Treatment M | 

         |                 |              |              | 

B Factor | Level 1 Level 2 | ... Level k  | .... Level L | 

         |                 |              |              | 

Obser-   |  X111    X112   | ....  X1jk   | ....  X1ML   | 

vations  |  X211    X212   | ....  X2jk   | ....  X2ML   | 

         |  .       .      | ....  .      | ....  .      | 

         |  .       .      | ....  .      | ....  .      | 

         |  Xn11    Xn12   | ....  Xnjk   | ....  XnML   | 

_________|_________________|______________|______________| 

         |  _       _      |       _      |       _      | 

B Means  |  X.11    X.12   | ....  X.jk   | ....  X.ML   | 

         |       _         |      _       |       _      | 

A Means  |       X.1.      |      X.j.    |       X.M.   | 

_________________________________________________________ 

 

 

The Variance Model 

 

 The observed X scores may be considered to be composed of several effects: 
                              

Xijk = μ + α j + ßk(j) + ek(j)       (6.18) 

 

The ANOVA Summary Table 

 

 We partition the total squared deviations of X scores from the grand mean of scores into sources of 
variation.  The independent sources may be used to form F ratios for the hypothesis that the treatment means of A 
levels are equal and the hypothesis that the treatment levels of B are equal.  The summary table (with sums of 
squares derivations) is as follows: 
___________________________________________________________________________________ 
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SOURCE     D.F.            SS                      ESTIMATES: 
___________________________________________________________________________________ 

 

                               M       _     _     2                       

A*         M-1             Σ  nj.(X.j.-X...)       σ
2
e
 + nDσ

2

B + nMσ
2

α                 

       j=1 

 

           M               M   Lj       _         _    2         

B          Σ (qj-1)       Σ   Σ   njk(X.jk - X.j.)     σ
2
e
 + nσ

2

B 

(pooled)  j=1               j=1 k=1 

 

           M   L            M  Lj  njk         _      2    

Within     Σ   Σ(njk-1)    Σ  Σ   Σ (Xijk - X.jk)    σ
2
e
 

          j=1 k=1          j=1 k=1 i=1 

 

_____________________________________________________________________________________ 

                           M   Lj  njk          _     2 

Total   N-1               Σ  Σ   Σ  (Xijk - X...) 

                          j=1 k=1 i=1 

______________________________________________________________________________________ 

 

* Note: When factor B is a random effect, D = 1 and the F ratio for testing the A effect is the MSA / MSB .  When 

factor B is a fixed effect, D=0 and the F ratio for testing A effects is MSA / MSw . 

________________________________________________________________________ 

 

 where: 

 Xijk = An observed score in B treatment level k under A treatment level j , 

               _ 

 X.jk = the mean of observations in B treatment level k in A treatment level j , 

 _ 

 X.j. = the mean of observations in A treatment level j , 

 _ 

 X... = the grand mean of all observations , 

 

 njk  = the number of observations in B treatment level k under A treatment level j  

 

 nj.  = the number of observations in A treatment level j, 

 

 N    = the total number of observations. 

 

    

 

A, B and C Factors with B Nested in A 

 

                _ 

MODEL: Xijk =  + i + j(i) + k + ik + jk + ijk     (6.19) 

 

 Assume that an experiment involves the use of  two different teaching methods, one which involves 

instruction for 1 consecutive hour and another that involves two half-hours of instruction 4 hours apart during a 

given day.  Three schools are randomly selected to provide method 1 and three schools are selected to provide 
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method 2.  Note that school is nested within method of instruction.  Now assume that n subjects are randomly 

selected for each of two categories of students in each school.  Category 1 students are males and category 2 

students are female.  This design may be illustrated in the table below: 

 

________________________________________________________________________ 

                               |      Instruction Method 1          |       Instruction Method 2 

------------------------------------------------------------------------------------------------------------  

                               | School 1 | School 2 | School 3 |  School 4 | School 5 | School 6 

------------------------------------------------------------------------------------------------------------  

Category 1             |       n       |       n       |       n       |         n               n               n  

Category 2             |       n       |       n       |       n       |         n               n               n 

________________________________________________________________________ 

 

Notice that without School, the Categories are crossed with method and therefore are NOT nested.  The expected 

values of the mean squares is: 

 

________________________________________________________________________ 

Source of Variation           df                                    Expected Value 

------------------------------------------------------------------------------------------------------------ 

A (Method)  p - 1  
2
e + nDqDr

2
 + nqDr

2
 + nrDq

2
 + nqr

2
 

B within A  p(q-1)  
2
e + nDr

2
  + nr

2
 

C (Category)  r - 1  
2
e + nDq

2
 + nqDp

2
  + npq

2
 

AC   (p-1)(r-1) 
2
e + nDq

2
 + nq

2
 

(B within A)C  p(q-1)(r-1) 
2
e + n

2
 

Within Cell  pqr(n-1) 
2

e  

________________________________________________________________________ 

 

where there are p methods of A, q nested treatments B (Schools) and r C treatments (Categories).  The D's with 

subscripts q, r or p have the value of 0 if the source is fixed and a value of 1 if the source is random.  In this version 

of the analysis, all effects are considered fixed (D's are all zero) and therefore the F tests all use the Within Cell 

mean square as the denominator.  If you use random treatment levels, you may need to calculate a more appropriate 

F test. 

 

Latin and Greco-Latin Square Designs 

Some Theory 

 

 In a typical 2 or 3-way analysis of variance design, there are independent groups assigned to each 

combination of the A, B (and C) treatment levels.  For example, if one is designing an experiment with 3 levels of 

Factor A, 4 levels of Factor B and 2 levels of Factor C, then a total of 24 groups of randomly selected subjects 

would be used in the experiment (with random assignment of the groups to the treatment combinations.)  With only 

4 observations (subjects) per group, this would require 96 subjects in total.  In such a design, one can obtain the 

main effects of A, B and C independent of the AxB, AxC, BxC and AxBxC interaction effects of the treatments.  

Often however, one may know before hand by previous research or by logical reasoning that the interactions should 

be minimal or would not exist.  When such a situation exists, one can use a design which confounds or partially 

confounds such interactions with the main effects and drastically reduces the number of treatment groups required 

for the analysis.  If the subjects can be repeatedly observed under various treatment conditions as in some of the 

previously discussed repeated-measures designs, then one can even further reduce the number of subjects required in 

the experiment.  The designs to be discussed in this section utilize what are known as “Latin Squares”. 

 

The Latin Square 

 

 A Latin square is a balanced two-way classification scheme.  In the following arrangement of letters, each 

letter occurs just once in each row and once in each column: 
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 A B C 

 B C A 

 C A B 

 

If we interchange the first and second row we obtain a similar arrangement with the same characteristics: 

 

 B C A 

 A B C 

 C A B 

 

Two Latin squares are orthogonal if, when they are combined, the same pair of symbols occurs no more than once in 

the composite squares.  For example, if the two Latin squares labeled Factor A and Factor B are combined to 

produce the composite shown below those squares the combination is NOT orthogonal because treatment 

combinations A1B2, A2B3, and A3B1 occur in more than one cell.  However, if we combine Factor A and Factor C 

we obtain a combination that IS orthogonal. 

 

     FACTOR A        FACTOR B        FACTOR C 

A1 A2 A3  B2 B3 B1  C1 C2 C3 

A2 A3 A1  B3 B1 B2  C3 C1 C2 

A3 A1 A2  B1 B2 B3  C2 C3 C1 

 

 COMBINED A and B 

 A1B2 A2B3 A3B1 

 A2B3 A3B1 A1B2 

 A3B1 A1B2 A2B3 

 

 COMBINED A and C 

 A1C1 A2C2 A3C3 

 A2C3 A3C1 A1C2 

 A3C2 A1C3 A2C1 

 

Notice that the 3 levels of treatment A and the 3 levels of treatment C are combined in such a way that no one 

combination is found in more than one cell.  When two Latin squares are combined to form an orthogonal 

combination of the two treatment factors, the combination is referred to as a Greco-Latin square.  Notice that the 

number of levels of both the treatment factors must be the same to form a square.  Extensive tables of orthogonal 

Latin squares have been compiled by Cochran and Cox in “Experimental Designs”, New York, Wiley, 1957. 

 

Typically, the Greco-Latin square is represented using only the number (subscripts) combinations such as: 

 

 11 22 33 

 23 31 12 

 32 13 21 

 

One can obtain additional squares by interchanging any two rows or columns of a Greco-Latin square.  Not all Latin 

squares can be combined to form a Greco-Latin square.  For example, there are no orthogonal squares for 6 by 6 or 

for 10 by 10 Latin squares.  If the dimensions of a Latin square can be expressed as a prime number raised to the 

power of any integer n, then orthogonal squares exist.  For example, orthogonal Latin squares exist of dimension 3, 

4, 5, 8 and 9 from the relationships 3  from 3
1
, 4 from 2

2
, 5 from 5

1
, 8 from 2

3
, 9 from 3

2
, etc. 

 

Latin squares are often tabled in only “standard form”.  A square in standard form is one in which the letters of the 

first row and column are in sequence.  For example, the following is a standard form for a 4 dimension square: 

 

 A B C D 

 B A D C 

 C D B A 

 D C A B 
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There are potentially a large number of standard forms for a Latin square of dimension n.  There are 4 standard 

forms for a 4 by 4 square, and 9,408 standard forms for a 6 by 6 square.   By interchanging rows and columns of the 

standard forms, one can create additional non-standard forms.  For a 4 by 4 there are a total of 576 Latin squares and 

for a 6 by 6 there are a total of 812,851,200 squares!  One can select at random a standard form for his or her design 

and then randomly select rows and columns to interchange to create a randomized combination of treatments. 

 

Plan 1 by B.J. Winer 

 

 In his book “Statistical Principles in Experimental Design”, New York, McGraw-Hill, 1962,  Winer 

outlines a number of experimental designs that utilize Latin squares.  He refers to these designs as “Plans” 1 through 

13 (with some variations in several plans.)  Not all plans have been included in OS2.  Eight have been selected for 

inclusion at this time.  The most simple design is that which provides the following model and estimates: 

 

MODEL:  Xijkm =  + i(s) + j(s) + k(s) + res(s) + m(ijk)     (6.20) 

 

Where i, j, k refer to levels of Factors A, B and C and m the individual subject in the unit.  The (s) indicates this is a 

model from a Latin (s)quare design. 

 

 

Source of Variation Degrees of Freedom Expected Mean Square 

 

A   p – 1   
2
 + np

2
 

 

B   p – 1   
2
 + np

2
 

 

C   p – 1   
2
 + np

2
 

 

Residual   (p – 1)(p – 2)  
2
 + np

2
res 

 

Within cell  p2(n – 1)  
2
 

 

 

In the above, p is the dimension of the square and n is the number of observations per unit. 

 

Plan 2 

 

 Winer’s Plan 2 expands the design of Plan 1 discussed above by adding levels of a Factor D.  Separate 

Latin Squares are used at each level of Factor D.  The plan of the design might appear as below: 

 

       FACTOR B         FACTOR B 

 B1 B2 B3   B1 B2 B3 

              FACTOR           FACTOR  

 

 A1 C3 C2 C1  A1 C1 C3 C2 

FACTOR            FACTOR 

     D1  A2 C1 C3 C2 D2 A2 C2 C1 C3 

 

  A3 C2 C1 C3  A3 C3 C2 C1 

 

The analysis of Plan 2 is as follows: 

 

Source of Variation Degrees of Freedom Expected Mean Square 
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A   p – 1   
2
 + npq

2
 

B   p – 1   
2
 + npq

2
 

C   p – 1   
2
 + npq

2
 

D   q – 1   
2
 + npq

2
 

AD   (p - 1)(q - 1)  
2
 + npq

2
 

BD   (p - 1)(q - 1)  
2
 + npq

2
 

CD   (p - 1)(q - 1)  
2
 + npq

2
 

Residual   q(p – 1)(p – 2)  
2
 + npq

2
res 

Within cell  p
2
q(n – 1)  

2
 

 

Notice that we can obtain the interactions with the D factor since all A, B and C treatments in the Latin square are 

observed under each level of D.   The model for Plan 2 expected value of the observed (X) score is: 

 

Xijkmo =  + i(s) + j(s) + k(s) + m + i(s)m + j(s)m + k(s)m + res(s)   (6.21) 

 

As in Plan 1 described above, the (s) indicates sources from the Latin square. 
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Plan 3 Latin Squares Design 

 

 Plan 3 utilizes a balanced set of p x p Latin squares in a p x p x p factorial experiment.  An example for a 3 

x 3 x 3 design is shown below: 

 

       FACTOR B         FACTOR B 

 B1 B2 B3   B1 B2 B3 

              FACTOR           FACTOR  

 

 A1 C1 C2 C3  A1 C2 C3 C1 

FACTOR            FACTOR 

     D1  A2 C2 C3 C1 D2 A2 C3 C1 C2 

 

  A3 C3 C1 C2  A3 C1 C2 C3 

 

 

       FACTOR B 

 B1 B2 B3 

              FACTOR 

 

 A1 C3 C1 C2 

FACTOR 

     D3  A2 C1 C2 C3 

 

  A3 C2 C3 C1 

 

The levels of factors A, B and C are assigned at random to the symbols defining the Latin square.  The levels of 

factor D are assigned at random to the whole squares.  Notice the levels of each factor must be p, unlike the previous 

plan 2.  In a complete 4 factor design wth three levels of each factor there would be 81 cells however with this 

design there are only 27.  The main effect of factor D will be partially confounded with the ABC interaction 

however the main effects of A, B and C as well as the their interactions will be complete.  The model of this design 

is: 

 

 E(Xijkmo) =  + i + j + k + ij + ik + jk + m + ’ijk    (6.22) 

 

The sources of variation, their degrees of freedom and parameter estimates are as shown below: 

 

SOURCE D.F.   E(MS) 

 

A  p – 1   
2
 + np

2


2
 

B  p – 1   
2
 + np

2


2
 

C  p – 1   
2
 + np

2


2
 

AB  (p – 1)(p – 1)   
2
 + np

2
 

AC  (p – 1)(p – 1)   
2
 + np

2
 

BC  (p – 1)(p – 1)   
2
 + np

2
 

D  p – 1   
2
 + np

2


2
 

(ABC)’  (p – 1)
3
 – (p – 1)   

2
 + n

2
 

Within cell p
3
(n – 1)   

2
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Analysis of Greco-Latin Squares 

 

 A Greco-Latin square design permits a three-way control of experimental units (row, column, and layer 

effects) through use of two Latin squares that are combined.  One square is denoted with Latin letters and the other 

with Greek letters as illustrated below: 

 

 Square I    Square II   Combined Squares 

 A B C      A B C 

 B C A      B C A 

 C A B      C A B 

 

Using numbers for the levels of the first and second effects, the composite square might also be represented by: 

 

 11 22 33 

 23 31 12 

 32 13 21 

 

There are actually four variables: row, column, Latin-letter and Greek letter variables with p-squared cells in the 

composite square rather than p * p * p * p as there would be in a four-factor factorial design.  The main effects of 

each of the factors will be confounded with the two-factor and higher interaction effects.  Therefore this design is 

limited to the situations where the four factors are assumed to have negligible interactions.  It is assumed that there 

are n independent observations in each cell. 

 

The analysis that results provides the following sources of variation: 

 

SOURCE  D.F.  E(MS) 

 

A (Rows)  p – 1  
2
 + np

2
 

B (Columns)  p – 1  
2
 + np

2
 

C (Latin Letters)  p – 1  
2
 + np

2
 

D (Greek Letters)  p – 1  
2
 + np

2
 

Residual   (p – 1)(p – 3) 
2
 + n

2
res 

Within Cell  p2(n - 1)  
2
  

 

Total   np2 – 1   

 

Plan 5 Latin Square Design 

 

 When the same unit (e.g. subject) may be observed under different treatment conditions, a considerable 

saving is realized in the sample size necessary for the experiment.  As in all repeated measures designs however one 

must make certain assumptions about the homogeneity of variance and covariance.  In plan 5 the levels of treatment 

under factor B are arranged in a Latin square with the columns representing levels of factor A.  The rows are groups 

of subjects for which repeated measures are made across the columns of the square.  The design is represented 

below: 

 

  FACTOR A Levels 

  A1 A2 A3 

  ------------------------- 

 G1 B3 B1 B2 

GROUP G2 B1 B2 B3 

 G3 B2 B3 B1 

 

The model of the analysis is: 
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 E(Xijkm) =  + k + m(k) + i + j + ’ij      (6.23) 

 

The sources of variation are estimated by: 

 

SOURCE  D.F.  E(MS) 

Between Subjects  np – 1 

 B  p – 1  
2
 + p

2
 + np

2
 

   Subjects in Groups p(n-1)  
2
 + p

2
 

 

Within Subjects  np(p-1)   

 A  p – 1  
2
 + np

2
 

 B  p – 1  
2
 + np

2
 

 (AB’)  (p – 1)(p – 2) 
2
 + n

2
 

  error (within) p(n – 1)(p – 1) 
2
 

Plan 6 Latin Squares Design 

 

 Winer indicates that Plan 6 may be considered “as a fractional replication of a three-factor factorial 

experiment arranged in incomplete blocks.”  Each subject within Group 1 is assigned to to treatement combinations 

abc111, abc231 and abc321 such that each subject in the group is observed under all levels of factors A and B but under 

only one level of factor C.  There is no balance with respect to any of the interactions but there is balance with 

respect to factors A and B.  If all interactions are negligible relative to the main effects the following model and the 

sources of variation are appropriate: 

 

     E(Xijkm) =  + k(s) + m(k) + i(s) + j(s) + res(s).     (6.24) 

 

SOURCE OF VARIATION D.F.  E(MS) 

 

Between subjects   np – 1 

   C    p – 1  
2
  + p

2
 + np

2
 

   Subjects within groups  p(n – 1)  
2
  + p

2
 

 

Within subjects   np(p – 1)    

   A    p – 1  
2
 + np

2
 

   B    p – 1  
2
 + np

2
 

   Residual   (p – 1)(p – 2) 
2
 + n

2
res 

   Error (within)   p(n – 1)(p – 1) 
2
 

 

The experiment may be viewed (for 3 levels of each variable) in the design below: 

 

            LEVELS OF FACTOR A 

GROUP     LEVELS OF C  A1 A2 A3 

 

     G1  C1  B1 B3 B2 

     G2  C2  B2 B1 B3 

     G3  C3  B3 B2 B1 

 

 

Plan 7 for Latin Squares 

 

 If, in the previous plan 6 we superimpose the Factors B and C as orthogonal Latin Squares, then Factor C is 

converted into a within-subjects effect.   The Greco-Latin square design may be viewed as the following (for 3 

levels of treatment): 
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  LEVELS OF FACTOR A 

Group  A1 A2 A3 

G1  BC11 BC23 BC32 

G2  BC22 BC31 BC13 

G3  BC33 BC12 BC21 

 

The expected value of X is given as: 

 

 E(Xijkmo) =  + m(s) + o(m) + i(s) + j(s) + k(s)    (6.25) 

 

The sources of variation, their degrees of freedom and the expected mean squares are: 

 

 

SOURCE OF VARIATION D.F.  E(MS) 

 

Between subjects   np – 1 

     Groups   p – 1  
2
 + p

2
 + np

2
 

     Subjects within groups  p(n – 1)  
2
 + p

2
 

 

Within subjects   np(p – 1) 

     A    p – 1  
2
 + np

2
 

     B    p – 1  
2
 + np

2
 

     C    p – 1  
2
 + np

2
 

     Residual   (p – 1)(p – 3) 
2
 + n

2
res 

     Error (within)   p(n – 1)(p – 1) 
2
 

 

Plan 9 Latin Squares 

 

 If we utilize the same Latin square for all levels of a Factor C we would have a design which looks like the 

outline shown below for 3 levels: 

 

     LEVELS OF FACTOR C 

  C1    C2    C3 

 LEVELS OF FACTOR A  LEVELS OF FACTOR A  LEVELS OF FACTOR A 

GROUP A1 A2 A3 GROUP A1 A2 A3 GROUP A1 A2 A3 

G1 B2 B3 B1 G4 B2 B3 B1 G7 B2 B3 B1 

G2 B1 B2 B3 G5 B1 B2 B3 G8 B1 B2 B3 

G3 B3 B1 B2 G6 B3 B1 B2 G9 B3 B1 B2 

 

The model for expected values of X is: 

 

E(Xijkmo) =  + k + (row)m + ( x row)km + o(m) + i + j + ’ij + ik + jk + ’ijk  (6.26) 

 

The sources of variation for Plan 9 are shown below: 

 

 

SOURCE OF VARIATION D.F.   E(MS) 

 

Between subjects   npq - 1 

     C    q – 1   
2
 + p2 + np

2


2
 

     Rows [AB(between)]  p – 1   
2
 + p2 + nq

2
 

     C x row [ABC(between)] (p – 1)(q – 1)  
2
 + p2 + n

2
 

     Subjects within groups  pq(n – 1)  
2
 + p2 
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Within subjects   npq(p – 1) 

     A    p – 1   
2
 + npq

2
 

     B    p – 1   
2
 + npq

2
 

     AC    (p – 1)(q – 1)  
2
 + np

2
 

     BC    (p – 1)(q – 1)  
2
 + np

2
 

     (AB)’   (p – 1)(p – 2)  
2
 + nq

2
 

     (ABC)’   (p – 1)(p – 3)(q – 1) 
2
 + n

2
 

     Error (within)   pq(p – 1)(n – 1)  
2
 

 

In this design the groups and subjects within groups are considered random while, like previous designs, the A,B 

and C factors are fixed.  Interactions with the group and subject effects are considered negligible.  

 

One Fixed and One Random Factor ANOVA 

 

Now let us run an example of an analysis with one fixed and one random factor.  We will use the data file named 

“Threeway.LAZ which could also serve to demonstrate a three way analysis of variance (with fixed or random 

effects.)  We will assume the row variable is fixed and the column variable is a random level.  We select the One, 

Two and Three Way ANOVA option from the Comparisons sub-menu of the Statistics menu.  The Fig. below shows 

how we specified the variables and their types: 

 

 

Fig. 6.1   Specification of a Two-Way ANOVA 

Now when we click the Continue button we obtain: 

 
Two Way Analysis of Variance 

 

Variable analyzed: X 

 

Factor A (rows) variable: Row (Fixed Levels) 

Factor B (columns) variable: Col (Fixed Levels) 

 

SOURCE         D.F.    SS        MS         F      PROB.> F   Omega Squared 

 

Among Rows        1    12.250    12.250     5.765   0.022      0.074 

Among Columns     1    42.250    42.250    19.882   0.000      0.293 

Interaction       1    12.250    12.250     5.765   0.022      0.074 

Within Groups    32    68.000     2.125 

Total            35   134.750     3.850 

 

Omega squared for combined effects =    0.441 
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Note: Denominator of F ratio is MSErr 

 

Descriptive Statistics 

 

GROUP Row Col.  N     MEAN   VARIANCE  STD.DEV. 

Cell   1   1    9     3.000     1.500     1.225 

Cell   1   2    9     4.000     1.500     1.225 

Cell   2   1    9     3.000     3.000     1.732 

Cell   2   2    9     6.333     2.500     1.581 

Row    1       18     3.500     1.676     1.295 

Row    2       18     4.667     5.529     2.351 

Col    1       18     3.000     2.118     1.455 

Col    2       18     5.167     3.324     1.823 

TOTAL          36     4.083     3.850     1.962 

 

 

TESTS FOR HOMOGENEITY OF VARIANCE 

--------------------------------------------------------------------- 

Hartley Fmax test statistic =       2.00 with deg.s freedom: 4 and 8. 

Cochran C statistic =       0.35 with deg.s freedom: 4 and 8. 

Bartlett Chi-square statistic =       3.34 with    3 D.F. Prob. larger value 

=  0.342 

--------------------------------------------------------------------- 

 

You will note that the denominator of the F statistic for the two main effects may be different.  You can also obtain 

plots for each main effect and the interaction effects. 

 

Analysis of Variance - Treatments by Subjects Design 

Introduction 

 

 A common research design in education involves repeated measurements of a group of subjects.  For 

example, a test composed of K items administered to students in a course might be considered a "treatments by 

subjects" design.  We might hypothesize that the means of the items are equal and test this hypothesis using the F 

statistic.  As another example, suppose we are interested in changing teacher opinion about doing classroom 

research.  We might develop a short attitude scale which measures their feelings concerning the feasibility and 

desirability of public school teachers conducting research.  We may then design several "in-service" training 

programs and discussions concerned with classroom research.  We administer our attitude instrument before the 

training programs, immediately following the training programs and a year later.  The hypothesis tested is that the 

mean attitude at each of the three testing times is equal. 

 

 

The Research Design 

 

 The Fig. below presents the schema for the Treatments by Subjects design.  Note that the same subjects are 

measured under each of the "treatment" conditions.  Our sample size is n subjects and the number of treatments is K. 

 

The main hypothesis to be tested is H0: μ1 = μ2 = ... = μk . 

 
          ________________________________________________ 
                   FACTOR TREATMENT GROUP 

          ________________________________________________ 

             1    2    3    4 .......... K         Mean 

          ________________________________________________ 
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                                                   _ 

 S           X11   X12   X13   X14 ........ X1k        X1. 

                                                   _ 

 U           X21   X22   X23   X24 ........ X2k        X2. 

 

 B           .    .    .    .            .         . 

             .    .    .    .            .         . 

 J                                                 _ 

             Xi1   Xi2   Xi3   Xi4 ........ Xij        Xi. 

 E 

             .    .    .    .            .          . 

 C           .    .    .    .            .          . 

                                                   _ 

 T           Xn1   Xn2   Xn3   Xn4 ........ Xnk        Xn. 

          ________________________________________________ 

             _    _    _     _           _         _ 

  Mean       X.1   X.2   X.3   X.4 ........ X.k        X.. 

 

 

Theoretical Model 

 

 The theoretical model for a subject i's score X on treatment j may be written 

 

 Xij = μ +αj+βi +αβij + eij 

 

 where μ is the population mean of the scores, 

 αj is the effect of treatment j, 

 βI is the effect of person i, 

 αβij is the interaction of subject i and treatment j, 

 and eij is the error for person i in treatment j. 

 

 In an experiment, we are interested in estimating the effect size of each treatment.  We may also be 

interested in knowing whether or not there are significant differences among the subjects, although this is usually 

not the case. 

Summary Table 

 

 The Treatments by Subjects  ANOVA Summary table is often presented as follows: 

________________________________________________________________________ 

SOURCE         D.F.          SS                        MS                F 

________________________________________________________________________ 

                                    k _   _   2 

A               K-1       nΣ(X.j-X..)               SSA/(K-1)        MSA/MSAxS 

                               j=1 

                                       n        _   2 

Subjects       n-1       KΣ(Xi.-X..)              SSS/(n-1)        MSS/MSAXS 

                                  i=1 

 

AxS Inter.    (K-1)(n-1)  SST - SSA - SSAxS         SSAxS/[(K-1)(n-1)] 

 

                           K   n          _   2 

Total           Kn - 1     Σ   Σ (Xij - X..) 

                          j=1 i=1 

 

________________________________________________________________________ 
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Assumptions 

 

 As in most ANOVA designs, we make a number of assumptions.  For the Treatments by Subjects design 

these are: 

 1. The sum of treatment effects (αj) are equal to zero, 

 2. The sum of person effects (βi) are equal to zero, 

 3. The sum of treatment x person interaction effects (αβij) 

   are zero, 

 4. The errors (eij) are normally distributed with mean zero, 

 5. The variance of errors in each treatment (σ
2
j) are equal, and 

 6. The covariances among the treatments (COVjk; j<k) are all equal. 

 

 

 The last assumption, equal covariances, means that if we were to transform scores within treatments to z 

scores, the correlations among the scores between any two treatments would all be equal in the population.  You will 

also not that the denominator of the F ratios for testing differences among treatment means and among subject 

means is the treatment by subjects interaction rather than the usual within cell (pooled across cells) variance. 

 

Population Parameters Estimated 

                                                                         

 The population mean of all scores (μ) is estimated by the overall mean.  The mean squares provide 

estimates as follows: 

 

MSA       estimates   σ
2

e + Nσ
2
α + σ

2
αβ 

 

MSS       estimates   σ
2

e + Kσ
2
β 

 

MSAxS     estimates   σ
2

e + σ
2

β 

 

Computational Formulas 

 

 The algebraic formulas presented in the ANOVA Summary table above are not usually the most convenient 

for calculation of the sums of squares terms.  The following formulas are usually used: 

 

 

                   K    2           2 

       SSA =  Σ  Tj. / n  - T../N 

                  j=1 

 

                  n    2              2 

      SSS =  Σ  Ti. / K  -  T.. / N 

                i=1 

 

                 K   n    2       2 

      SST = Σ   Σ Xij  -  T.. / N 

               j=1 i=1 

 

      SSAxS =  SST  -  SSA  -  SSS 

 

 where Tj. is the total of score values within treatment j, 

 Ti. is the total of score values for subject i, 

 T.. is the grand total of all score values, 

 n is the number of subjects, and 

 N is the grand number of all scores and equal to Kn. 
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An Example 

 

 To perform a Treatments by Subjects analysis of variance, we will use a sample data file labeled 

“ABRData.LAZ”.  We open the file and select the option “Within Subjects Anova” in the Comparisons sub-menu 

under the Statistics menu.  The Fig. below is then completed as shown: 

 

 

Fig. 6.2   Within Subjects ANOVA Form 

Notice that the repeated measures are the columns labeled C1 through C4.  You will also note that this same 

procedure will report intraclass reliability estimates if elected.  If you now click the Compute button, you obtain the 

results shown below: 

 
Treatments by Subjects (AxS) ANOVA Results. 

 

Data File = C:\Users\wgmiller\LazStats\LazStatsData\ABRDATA.LAZ 

 

 

----------------------------------------------------------- 

SOURCE           DF        SS        MS        F  Prob. > F 

----------------------------------------------------------- 

SUBJECTS         11   181.000    16.455 

WITHIN SUBJECTS  36  1077.000    29.917 

   TREATMENTS     3   991.500   330.500   127.561     0.000 

   RESIDUAL      33    85.500     2.591 

----------------------------------------------------------- 

TOTAL            47  1258.000    26.766 

----------------------------------------------------------- 

 

 

TREATMENT (COLUMN) MEANS AND STANDARD DEVIATIONS 

VARIABLE  MEAN      STD.DEV. 

C1          16.500     2.067 

C2          11.500     2.431 

C3           7.750     2.417 

C4           4.250     2.864 

 

Mean of all scores =     10.000 with standard deviation =      5.174 

 

BOX TEST FOR HOMOGENEITY OF VARIANCE-COVARIANCE MATRIX 

 

 

SAMPLE COVARIANCE MATRIX with   12 cases. 

 

 

Variables 

                     C1           C2           C3           C4 
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        C1       4.273        2.455        1.227        1.318  

        C2       2.455        5.909        4.773        5.591  

        C3       1.227        4.773        5.841        5.432  

        C4       1.318        5.591        5.432        8.205  

 

 

 

 

ASSUMED POP. COVARIANCE MATRIX with   12 cases. 

 

 

Variables 

                     C1           C2           C3           C4 

        C1       6.057        0.693        0.693        0.693  

        C2       0.114        5.977        0.614        0.614  

        C3       0.114        0.103        5.914        0.551  

        C4       0.114        0.103        0.093        5.863  

 

 

 

Determinant of variance-covariance matrix =       81.6 

Determinant of homogeneity matrix =   1.26E003 

ChiSquare =    108.149 with   8 degrees of freedom 

Probability of larger chisquare = 9.66E-007 
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Treatment by Subjects (AxS Mixed Design) 
 
 
We will employ the same data set used in the previous analysis.  We select the AxS ANOVA option in the 

Comparisons sub-menu of the Statistics menu and complete the specifications on the form as show below: 

 

 

Fig. 6.3   Treatment by Subjects ANOVA Form 

 

When the Compute button  is clicked you should see these results: 
 

ANOVA With One Between Subjects and One Within Subjects Treatments 

 

------------------------------------------------------------------ 

Source             df      SS         MS         F         Prob. 

------------------------------------------------------------------ 

Between            11    181.000 

   Groups (A)       1     10.083     10.083      0.590      0.4602 

   Subjects w.g.   10    170.917     17.092 

 

Within Subjects    36   1077.000 

   B Treatments     3    991.500    330.500    128.627      0.0000 

   A X B inter.     3      8.417      2.806      1.092      0.3677 

   B X S w.g.      30     77.083      2.569 

 

TOTAL              47   1258.000 

------------------------------------------------------------------ 

Means 

TRT.   B  1   B  2   B  3   B  4   TOTAL 

 A  

  1   16.167 11.000  7.833  3.167  9.542 

  2   16.833 12.000  7.667  5.333 10.458 

TOTAL 16.500 11.500  7.750  4.250 10.000 

 

Standard Deviations 

TRT.   B  1   B  2   B  3   B  4   TOTAL 

 A  

  1    2.714  2.098  2.714  1.835  5.316 

  2    1.329  2.828  2.338  3.445  5.099 

TOTAL  2.067  2.431  2.417  2.864  5.174 

 

Notice there appears to be no significant difference between the two groups of subjects but that within the groups, 

the first two treatment means appear to be significantly larger than the last two. 
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Since we elected to plot the means, we would also obtain the Fig. shown below: 

 

 

Fig. 6.4   Plot of Treatment by Subjects ANOVA Means 

The graphics again demonstrate the greatest differences appear to be among the repeated measures and not the 

groups (A1 and A2.) 

 

 You may also have a design with two between-groups factors and repeated measures within each cell 

composed of subjects randomly assigned to the factor A and factor B level combinations.  If you have such a design, 

you can employ the AxBxR Anova procedure in the LazStats package. 

 

Two Factor Repeated Measures Analysis 

 

 Repeated measures designs have the advantage that the error terms are typically smaller that designs using 

independent groups of observations.  This was true for the Student t-test using matched or correlated scores.  On the 

down-side, repeated measures on the same objects pose a special problem, particularly when the objects are human 

subjects.  The main problem is "practice" or "learning" effects that may be greater for one treatment level than 

another.  These effects are completely confounded with the actual treatment effects.  While random or counter-

balanced assignment of the treatments may reduce the cumulative effects to some degree, it does not remove the 

effects specific to a given treatment.  It is also assumed that the covariance matrices are equal among the treatment 

levels.  Users of these designs with human subjects should be careful to minimize the practice effects.  This can 

sometimes be done by having subjects do tasks that are similar to those in the actual experiment before beginning 

trials of the experiment. 

 

 In this analysis, subjects (or objects) are observed (measured) under two different treatment levels (Factors 

A and B levels) .  For example, there might be two levels of a Factor A and three levels of a Factor B for a total of 2 

x 3 = 6 treatment level combinations.  Each subject would be observed 6 times in all.  There must be the same 

subjects in each of the combinations. 

 

 The data file analyzed must consist of 4 columns of information for each observation: a variable containing 

an integer identification code for the subject (1..N),  an integer from 1 to A for the treatment level of A, an integer 

from 1 to B for the treatment level of the Factor B, and a floating point variable for the observation (measurement). 

 

 A sample file (tworepeated.LAZ) was created from the example given by Quinn McNemar in his text book 

"Psychological Statistics",  fourth edition, John Wiley and Sons, Inc., 1969, page 367.  The data represent an 

experiment in which four subjects are observed under two levels of illumination and three levels of Albedo (Factors 

A and B.)  The data file therefore contains 24 observations (4 x 2 x 3.)  The analysis is initiated by loading the file 

and clicking on the "Two Within Subjects" option in the Analyses of Variance menu.  The form which appears is 

shown below.  Notice that the options have been selected to plot means of the two main effects and the interaction 
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effects.  An option has also been clicked to obtain post-hoc comparisons among the 6 means for the treatment 

combinations. 

 

Fig. 6.5   Form for the Two-Way Repeated Measures ANOVA 

 

When the "Compute" button is clicked the following output is obtained: 
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Fig. 6.6   Plot of Factor A Means in the Two-Way Repeated Measures Analysis 
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Fig. 6.7   Plot of Factor B in the Two-Way Repeated Measures Analysis 
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Fig. 6.8   Plot of Factor A and Factor B Interaction in the Two-Way Repeated Measures Analysis 

 

 
 

------------------------------------------------------------------- 

SOURCE           DF          SS          MS         F     Prob.>F 

------------------------------------------------------------------- 

Factor A           1        204.167     204.167      9.853  0.052 

Factor B           2       8039.083    4019.542     24.994  0.001 

Subjects           3       1302.833     434.278 

A x B Interaction  2         46.583      23.292      0.803  0.491 

A x S Interaction  3         62.167      20.722 

B x S Interaction  6        964.917     160.819 

A x B x S Inter.   6        174.083       29.01 

------------------------------------------------------------------- 

Total             23      10793.833 

------------------------------------------------------------------- 

Group 1 : Mean for cell A 1 and B 1 =     17.250 

Group 2 : Mean for cell A 1 and B 2 =     26.000 

Group 3 : Mean for cell A 1 and B 3 =     60.250 

Group 4 : Mean for cell A 2 and B 1 =     20.750 

Group 5 : Mean for cell A 2 and B 2 =     35.750 

Group 6 : Mean for cell A 2 and B 3 =     64.500 

 

Means for Factor A 

Group 1 Mean =     34.500 

Group 2 Mean =     40.333 
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Means for Factor B 

Group 1 Mean =     19.000 

Group 2 Mean =     30.875 

Group 3 Mean =     62.375 

 

 

--------------------------------------------------------------- 

             Tukey HSD Test for (Differences Between Means 

                            alpha selected = 0.05 

Groups     Difference  Statistic      Probability  Significant? 

--------------------------------------------------------------- 

 1 -  2      -8.750     q =  3.249         0.3192       NO 

 1 -  3     -43.000     q = 15.966         0.0004       YES  

 1 -  4      -3.500     q =  1.300         0.9278       NO 

 1 -  5     -18.500     q =  6.869         0.0206       YES  

 1 -  6     -47.250     q = 17.544         0.0003       YES  

--------------------------------------------------------------- 

 2 -  3     -34.250     q = 12.717         0.0009       YES  

 2 -  4       5.250     q =  1.949         0.7388       NO 

 2 -  5      -9.750     q =  3.620         0.2396       NO 

 2 -  6     -38.500     q = 14.295         0.0006       YES  

--------------------------------------------------------------- 

 3 -  4      39.500     q = 14.666         0.0005       YES  

 3 -  5      24.500     q =  9.097         0.0052       YES  

 3 -  6      -4.250     q =  1.578         0.8593       NO 

--------------------------------------------------------------- 

 4 -  5     -15.000     q =  5.570         0.0523       NO 

 4 -  6     -43.750     q = 16.244         0.0004       YES  

--------------------------------------------------------------- 

 5 -  6     -28.750     q = 10.675         0.0023       YES  

--------------------------------------------------------------- 

 

--------------------------------------------------------------- 

           Tukey-Kramer Test for (Differences Between Means 

                     alpha selected = 0.05 

Groups     Difference  Statistic      Probability  Significant? 

--------------------------------------------------------------- 

 1 -  2     -8.750     q =  3.249         0.3192       NO 

 1 -  3    -43.000     q = 15.966         0.0004       YES  

 1 -  4     -3.500     q =  1.300         0.9278       NO 

 1 -  5    -18.500     q =  6.869         0.0206       YES  

 1 -  6    -47.250     q = 17.544         0.0003       YES  

 2 -  3    -34.250     q = 12.717         0.0009       YES  

 2 -  4      5.250     q =  1.949         0.7388       NO 

 2 -  5     -9.750     q =  3.620         0.2396       NO 

 2 -  6    -38.500     q = 14.295         0.0006       YES  

 3 -  4     39.500     q = 14.666         0.0005       YES  

 3 -  5     24.500     q =  9.097         0.0052       YES  

 3 -  6     -4.250     q =  1.578         0.8593       NO 

 4 -  5    -15.000     q =  5.570         0.0523       NO 

 4 -  6    -43.750     q = 16.244         0.0004       YES  

 5 -  6    -28.750     q = 10.675         0.0023       YES  

--------------------------------------------------------------- 

 

--------------------------------------------------------------- 

           Tukey B Test for (Contrasts on Ordered Means 

                          alpha selected = 0.05 
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--------------------------------------------------------------- 

 

Groups    Difference  Statistic   d.f.     Prob.>value  Significant? 

  1 -   4     -3.500       1.300     2,   6  0.661       NO 

  1 -   2     -8.750       3.249     3,   6  0.226       NO 

  1 -   5    -18.500       6.869     4,   6  0.016       YES 

  1 -   3    -43.000      15.966     5,   6  0.000       YES 

  1 -   6    -47.250      17.544     6,   6  0.000       YES 

  4 -   2     -5.250       1.949     2,   6  0.478       NO 

  4 -   5    -15.000       5.570     3,   6  0.035       YES 

  4 -   3    -39.500      14.666     4,   6  0.000       YES 

  4 -   6    -43.750      16.244     5,   6  0.000       YES 

  2 -   5     -9.750       3.620     2,   6  0.141       NO 

  2 -   3    -34.250      12.717     3,   6  0.001       YES 

  2 -   6    -38.500      14.295     4,   6  0.000       YES 

  5 -   3    -24.500       9.097     2,   6  0.003       YES 

  5 -   6    -28.750      10.675     3,   6  0.002       YES 

  3 -   6     -4.250       1.578     2,   6  0.583       NO 

 

---------------------------------------------------------------- 

                 Scheffe contrasts among pairs of means. 

                            alpha selected = 0.05 

Group vs Group  Difference   Scheffe    Critical  Significant? 

                             Statistic  Value 

---------------------------------------------------------------- 

 1         2         -8.75     2.30      3.723     NO 

 1         3        -43.00    11.29      3.723     YES 

 1         4         -3.50     0.92      3.723     NO 

 1         5        -18.50     4.86      3.723     YES 

 1         6        -47.25    12.41      3.723     YES 

---------------------------------------------------------------- 

 2         3        -34.25     8.99      3.723     YES 

 2         4          5.25     1.38      3.723     NO 

 2         5         -9.75     2.56      3.723     NO 

 2         6        -38.50    10.11      3.723     YES 

---------------------------------------------------------------- 

 3         4         39.50    10.37      3.723     YES 

 3         5         24.50     6.43      3.723     YES 

 3         6         -4.25     1.12      3.723     NO 

---------------------------------------------------------------- 

 4         5        -15.00     3.94      3.723     YES 

 4         6        -43.75    11.49      3.723     YES 

---------------------------------------------------------------- 

 5         6        -28.75     7.55      3.723     YES 

---------------------------------------------------------------- 

 

---------------------------------------------------------------------- 

            Neuman-Keuls Test for (Contrasts on Ordered Means 

                            alpha selected = 0.05 

 

Group     Mean 

  1      17.250 

  4      20.750 

  2      26.000 

  5      35.750 

  3      60.250 

  6      64.500 

 

Groups     Difference  Statistic      d.f.   Probability  Significant? 
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---------------------------------------------------------------------- 

 1 -  4      -3.500      q =  1.300    2    6     0.3935       NO 

 1 -  2      -8.750      q =  3.249    3    6     0.1323       NO 

 1 -  5     -18.500      q =  6.869    4    6     0.0112       YES 

 1 -  3     -43.000      q = 15.966    5    6     0.0003       YES 

 1 -  6     -47.250      q = 17.544    6    6     0.0003       YES 

 4 -  2      -5.250      q =  1.949    2    6     0.2174       NO 

 4 -  5     -15.000      q =  5.570    3    6     0.0180       YES 

 4 -  3     -39.500      q = 14.666    4    6     0.0002       YES 

 4 -  6     -43.750      q = 16.244    5    6     0.0003       YES 

 2 -  5      -9.750      q =  3.620    2    6     0.0430       YES 

 2 -  3     -34.250      q = 12.717    3    6     0.0004       YES 

 2 -  6     -38.500      q = 14.295    4    6     0.0003       YES 

 5 -  3     -24.500      q =  9.097    2    6     0.0008       YES 

 5 -  6     -28.750      q = 10.675    3    6     0.0008       YES 

 3 -  6      -4.250      q =  1.578    2    6     0.3070       NO 

---------------------------------------------------------------------- 

 

The above results reflect possible significance for the main effects of Factors A and B but not for the interaction.  

The F ratio of the Factor A is obtained by dividing the mean square for Factor A by the mean square for interaction 

of subjects with Factor A.  In a similar manner, the F ratio for Factor B is the ratio of the mean square for Factor B 

to the mean square of the interaction of Factor B with subjects.  Finally, the F ratio for the interaction of Factor A 

with Factor B uses the triple interaction of A with B with Subjects as the denominator. 

 

 Between 5 or 6 of the post-hoc comparisons were not significant among the 15 possible comparisons 

among means using the 0.05 level for rejection of the hypothesis of no difference. 

 

Nested Factors Analysis Of Variance Design 

 

 

Shown below is an example of a nested analysis using the file ABNested.LAZ.  When you select this analysis, you 

see the dialog below: 

 

 

Fig. 6.9   The Nested ANOVA Form 

The results are shown below: 
 

Nested ANOVA by Bill Miller 

File Analyzed = C:\lazarus\Projects\LazStats\LazStatsData\ABNested.LAZ 

CELL MEANS 

A LEVEL     BLEVEL         MEAN           STD.DEV. 

    1         1             2.667          1.528 

    1         2             3.333          1.528 

    1         3             4.000          1.732 



Statistics and Measurement Concepts for LazStats   William G. Miller ©2012 

 

 211 

    2         4             3.667          1.528 

    2         5             4.000          1.000 

    2         6             5.000          1.000 

    3         7             3.667          1.155 

    3         8             5.000          1.000 

    3         9             6.333          0.577 

 

A MARGIN MEANS 

A LEVEL       MEAN             STD.DEV. 

    1          3.333            1.500 

    2          4.222            1.202 

    3          5.000            1.414 

 

GRAND MEAN =      4.185 

 

ANOVA TABLE 

SOURCE     D.F.        SS        MS        F         PROB. 

A            2      12.519     6.259     3.841     0.041 

B(W)         6      16.222     2.704     1.659     0.189 

w.cells     18      29.333     1.630 

Total       26      58.074 

 

Of course, if you elect to plot the means, additional graphical output is included. 

A, B and C Factors with B Nested in A 

 

Shown below is the dialog for this ANOVA design and the results of analyzing the file ABCNested.LAZ: 

 

 

Fig. 6.10   Three Factor Nested ANOVA 

 

The results are: 

 
Nested ANOVA by Bill Miller 

File Analyzed = C:\lazarus\Projects\LazStats\LazStatsData\ABCNested.LAZ 

 

CELL MEANS 

A LEVEL     BLEVEL       CLEVEL       MEAN       STD.DEV. 

    1           1           1        2.6667        1.5275 

    1           1           2        3.3333        1.1547 

    1           2           1        3.3333        1.5275 

    1           2           2        3.6667        2.0817 
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    1           3           1        4.0000        1.7321 

    1           3           2        5.0000        1.7321 

    2           4           1        3.6667        1.5275 

    2           4           2        4.6667        1.5275 

    2           5           1        4.0000        1.0000 

    2           5           2        4.6667        0.5774 

    2           6           1        5.0000        1.0000 

    2           6           2        3.0000        1.0000 

    3           7           1        3.6667        1.1547 

    3           7           2        2.6667        1.1547 

    3           8           1        5.0000        1.0000 

    3           8           2        6.0000        1.0000 

    3           9           1        6.6667        1.1547 

    3           9           2        6.3333        0.5774 

 

A MARGIN MEANS 

A LEVEL       MEAN       STD.DEV. 

    1          3.667         1.572 

    2          4.167         1.200 

    3          5.056         1.731 

 

B MARGIN MEANS 

B LEVEL       MEAN       STD.DEV. 

    1          3.000         1.265 

    2          3.500         1.643 

    3          4.500         1.643 

    4          4.167         1.472 

    5          4.333         0.816 

    6          4.000         1.414 

    7          3.167         1.169 

    8          5.500         1.049 

    9          6.500         0.837 

 

C MARGIN MEANS 

C LEVEL       MEAN       STD.DEV. 

    1          4.222         1.577 

    2          4.370         1.644 

 

AB MARGIN MEANS 

A LEVEL   B LEVEL       MEAN       STD.DEV. 

    1         1          3.000         1.265 

    1         2          3.500         1.643 

    1         3          4.500         1.643 

    2         4          4.167         1.472 

    2         5          4.333         0.816 

    2         6          4.000         1.414 

    3         7          3.167         1.169 

    3         8          5.500         1.049 

    3         9          6.500         0.837 

 

AC MARGIN MEANS 

A LEVEL   C LEVEL       MEAN       STD.DEV. 

    1         1          0.000         1.500 

    1         2          0.000         1.658 

    2         1          0.000         1.202 

    2         2          0.000         1.269 

    3         1          0.000         1.616 

    3         2          0.000         1.936 
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GRAND MEAN =      4.296 

 

ANOVA TABLE 

SOURCE     D.F.        SS        MS        F         PROB. 

A            2      17.815     8.907     5.203     0.010 

B(A)         6      42.444     7.074     4.132     0.003 

C            1       0.296     0.296     0.173     0.680 

AxC          2       1.815     0.907     0.530     0.593 

B(A)xC       6      11.556     1.926     1.125     0.368 

w.cells     36      61.630     1.712 

Total       53     135.259 

 

Latin and Greco-Latin Square Designs 

Example in Education Using a Latin Square 

 

 Assume you are interested in the achievement of students under three methods of instruction for a required 

course in biology (self, computer, and classroom), interested in differences of these instruction modes for three 

colleges within a university (agriculture, education, engineering) and three types of students (in-state, out-of-state, 

out-of-country).  We could use a completely balanced 3-way analysis of variance design with Factor A = 

instructional mode, Factor B = College and Factor C = type of student.  There would be 27 experimental units 

(samples of subjects) in this design.  On the other hand we might employ the following design: 

 

    FACTOR A (Instruction) 

   Self  Computer Classroom 

FACTOR B 

(College) 

 

Agriculture  C2  C1  C3 

 

Education  C1  C3  C2 

 

Engineering  C3  C2  C1 

 

In this design C1 is the in-state student unit, C2 is the out-of-state student unit and C3 is the out-of-country student 

unit.  There are only 9 units in this design as contrasted with 27 units in the completely balanced design.  Note that 

each type of student receives each type of instruction.  Also note however that, within a college, students of each 

type do NOT receive each type of instruction.  We will have to assume that the interaction of college and type of 

instruction, the interaction of college and type of student, the interaction of type of instruction and type of student 

and the triple interaction of College, instruction and student are small or do not exist.  We are primarily interested in 

the main effects, that is, differences among student types, types of instruction and colleges on the achievement 

scores obtained in the biology course.  We might use Plan 1 described below. 

Plan 1 by B.J. Winer 

 

We have prepared an example file for you to analyze with LazStats.  Open the file labeled LatinSqr.LAZ in your 

set of sample data files.  We have entered four cases for each unit in our design for instructional mode, college and 

home residence.  Once you have loaded the file, select the Latin squares designs option under the sub-menu for 

comparisons under the Analyses menu.  You should see the form below for selecting the Plan 1 analysis. 
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Fig. 6.11   Latin and Greaco-Latin Squares Form 

 

When you have selected Plan 1 for the analysis, click the OK button to continue.  You will then see the form below 

for entering the specifications for your analysis.  We have entered the variables for factors A, B and C and entered 

the number of cases for each unit: 

 

 

Fig. 6.12   Latin Squares Analysis Dialog 

 

  We have completed the entry of our variables and the number of cases and are ready to continue. 

When you press the OK button, the following results are presented on the output page: 

 
Latin Square Analysis Plan 1 Results 

 

----------------------------------------------------------- 

Source         SS        DF        MS        F      Prob.>F 

----------------------------------------------------------- 

Factor A     92.389         2    46.194    12.535     0.000 

Factor B     40.222         2    20.111     5.457     0.010 
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Factor C    198.722         2    99.361    26.962     0.000 

Residual     33.389         2    16.694     4.530     0.020 

Within       99.500        27     3.685 

Total       464.222        35 

----------------------------------------------------------- 

 

Experimental Design 

------------------------------ 

Instruction   1    2    3  

------------------------------ 

   College 

     1       C2   C3   C1 

     2       C3   C1   C2 

     3       C1   C2   C3 

------------------------------ 

 

 

Cell means and totals 

-------------------------------------------------- 

Instruction     1         2         3        Total 

-------------------------------------------------- 

   College 

     1        2.750    10.750     3.500     5.667  

     2        8.250     2.250     1.250     3.917  

     3        1.500     1.500     2.250     1.750  

Total         4.167     4.833     2.333     3.778  

-------------------------------------------------- 

 

-------------------------------------------------- 

 Residence     1         2         3        Total 

-------------------------------------------------- 

              2.417     1.833     7.083     3.778  

-------------------------------------------------- 

 

A partial test of the interaction effects can be made by the ratio of the MS for residual to the MS within cells.  In 

our example, it appears that our assumptions of no interaction effects may be in error.  In this case, the main effects 

may be confounded by interactions among the factors.  The results may never the less suggest differences do exist 

and we should complete another balanced experiment to determine the interaction effects. 

 

Plan 2 

 

We have included the file “LatinSqr2.LAZ” as an example for analysis.  Load the file in the grid and select the 

Latin Square Analyses, Plan 2 design.  The form below shows the entry of the variables and the sample size for the 

analysis: 
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Fig. 6.13   Four Factor Latin Square Design Form 

 

When you click the OK button, you will see the following results: 

 
Latin Square Analysis Plan 2 Results 

 

----------------------------------------------------------- 

Source         SS        DF        MS        F      Prob.>F 

----------------------------------------------------------- 

Factor A    148.028         2    74.014    20.084     0.000 

Factor B      5.444         2     2.722     0.739     0.483 

Factor C     66.694         2    33.347     9.049     0.000 

Factor D     18.000         1    18.000     4.884     0.031 

A x D        36.750         2    18.375     4.986     0.010 

B x D        75.000         2    37.500    10.176     0.000 

C x D       330.750         2   165.375    44.876     0.000 

Residual     66.778         4    16.694     4.530     0.003 

Within      199.000        54     3.685 

Total       946.444        71 

----------------------------------------------------------- 

 

Experimental Design for block 1 

------------------------------ 

      Drug   1    2    3  

------------------------------ 

  Hospital 

     1       C2   C3   C1 

     2       C3   C1   C2 

     3       C1   C2   C3 

------------------------------ 

 

Experimental Design for block 2 
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------------------------------ 

      Drug   1    2    3  

------------------------------ 

  Hospital 

     1       C2   C3   C1 

     2       C3   C1   C2 

     3       C1   C2   C3 

------------------------------ 

 

BLOCK 1 

 

Cell means and totals 

-------------------------------------------------- 

      Drug     1         2         3        Total 

-------------------------------------------------- 

  Hospital 

     1        2.750    10.750     3.500     5.667  

     2        8.250     2.250     1.250     3.917  

     3        1.500     1.500     2.250     1.750  

Total         4.167     4.833     2.333     4.278  

-------------------------------------------------- 

 

BLOCK 2 

 

Cell means and totals 

-------------------------------------------------- 

      Drug     1         2         3        Total 

-------------------------------------------------- 

  Hospital 

     1        9.250     2.250     3.250     4.917  

     2        3.750     4.500    11.750     6.667  

     3        2.500     3.250     2.500     2.750  

Total         5.167     3.333     5.833     4.278  

-------------------------------------------------- 

 

-------------------------------------------------- 

  Category     1         2         3        Total 

-------------------------------------------------- 

              2.917     4.958     4.958     4.278  

-------------------------------------------------- 

Notice that the interactions with Factor D are obtained.  The residual however indicates that some of the other 

interactions confounded with the main factors may be significant and, again, we do not know the portion of the 

differences among the main effects that are potentially due to interactions among A, B, and C. 

Plan 3 Latin Squares Design 

 

 The file “LatinSqr3.LAZ” contains an example of data for the Plan 3 analysis.  Following the previous 

plans, we show below the specifications for the analysis and results from analyzing this data: 
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Fig. 6.14   Another Latin Square (Plan 3) Dialog Form 

 
Latin Square Analysis Plan 3 Results 

 

----------------------------------------------------------- 

Source         SS        DF        MS        F      Prob.>F 

----------------------------------------------------------- 

Factor A     26.963         2    13.481     3.785     0.027 

Factor B    220.130         2   110.065    30.902     0.000 

Factor C    213.574         2   106.787    29.982     0.000 

Factor D     19.185         2     9.593     2.693     0.074 

A x B        49.148         4    12.287     3.450     0.012 

A x C       375.037         4    93.759    26.324     0.000 

B x C        78.370         4    19.593     5.501     0.001 

A x B x C   118.500         6    19.750     5.545     0.000 

Within      288.500        81     3.562 

Total      1389.407       107 

----------------------------------------------------------- 

 

Experimental Design for block 1 

------------------------------ 

      Drug   1    2    3  

------------------------------ 

  Hospital 

     1       C1   C2   C3 

     2       C2   C3   C1 

     3       C3   C1   C2 

------------------------------ 

 

Experimental Design for block 2 

------------------------------ 

      Drug   1    2    3  

------------------------------ 
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  Hospital 

     1       C2   C3   C1 

     2       C3   C1   C2 

     3       C1   C2   C3 

------------------------------ 

 

Experimental Design for block 3 

------------------------------ 

      Drug   1    2    3  

------------------------------ 

  Hospital 

     1       C3   C1   C2 

     2       C1   C2   C3 

     3       C2   C3   C1 

------------------------------ 

 

BLOCK 1 

 

Cell means and totals 

-------------------------------------------------- 

      Drug     1         2         3        Total 

-------------------------------------------------- 

  Hospital 

     1        2.750     1.250     1.500     1.833  

     2        3.250     4.500     2.500     3.417  

     3       10.250     8.250     2.250     6.917  

Total         5.417     4.667     2.083     4.074  

-------------------------------------------------- 

 

BLOCK 2 

 

Cell means and totals 

-------------------------------------------------- 

      Drug     1         2         3        Total 

-------------------------------------------------- 

  Hospital 

     1       10.750     8.250     2.250     7.083  

     2        9.250    11.750     3.250     8.083  

     3        3.500     1.750     1.500     2.250  

Total         7.833     7.250     2.333     4.074  

-------------------------------------------------- 

 

BLOCK 3 

 

Cell means and totals 

-------------------------------------------------- 

      Drug     1         2         3        Total 

-------------------------------------------------- 

  Hospital 

     1        3.500     2.250     1.500     2.417  

     2        2.250     3.750     2.500     2.833  

     3        2.750     1.250     1.500     1.833  

Total         2.833     2.417     1.833     4.074  

-------------------------------------------------- 

 

Means for each variable 

 

-------------------------------------------------- 

  Hospital     1         2         3        Total 
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-------------------------------------------------- 

              3.778     4.778     3.667     4.074  

-------------------------------------------------- 

 

-------------------------------------------------- 

      Drug     1         2         3        Total 

-------------------------------------------------- 

              5.361     4.778     2.083     4.074  

-------------------------------------------------- 

 

-------------------------------------------------- 

  Category     1         2         3        Total 

-------------------------------------------------- 

              4.056     5.806     2.361     4.074  

-------------------------------------------------- 

 

-------------------------------------------------- 

     Block     1         2         3        Total 

-------------------------------------------------- 

              4.500     4.222     3.500     4.074  

-------------------------------------------------- 

 

Here, the main effect of factor D is partially confounded with the ABC interaction. 

 

Analysis of Greco-Latin Squares 

 

 

 The file labeled “LatinGreco.LAZ” contains sample data for a Greco-Latin design analysis. 

 

The specifications for the analysis are entered as: 

 

Fig. 6.15   Latin Square Design Form 
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The results are obtained as: 

 
Greco-Latin Square Analysis (No Interactions) 

----------------------------------------------------------- 

Source         SS        DF        MS        F      Prob.>F 

----------------------------------------------------------- 

Factor A     64.889         2    32.444     9.733     0.001 

Factor B     64.889         2    32.444     9.733     0.001 

Latin Sqr.   24.889         2    12.444     3.733     0.037 

Greek Sqr.   22.222         2    11.111     3.333     0.051 

Residual      -         -          -         -         - 

Within       90.000        27     3.333 

Total       266.889        35 

----------------------------------------------------------- 

Experimental Design for Latin Square  

------------------------------ 

         B   1    2    3  

------------------------------ 

         A 

     1       C1   C2   C3 

     2       C2   C3   C1 

     3       C3   C1   C2 

------------------------------ 

Experimental Design for Greek Square  

------------------------------ 

         B   1    2    3  

------------------------------ 

         A 

     1       C1   C2   C3 

     2       C3   C1   C2 

     3       C2   C3   C1 

------------------------------ 

 

Cell means and totals 

-------------------------------------------------- 

         B     1         2         3        Total 

-------------------------------------------------- 

         A 

     1        4.000     6.000     7.000     5.667  

     2        6.000    12.000     8.000     8.667  

     3        7.000     8.000    10.000     8.333  

Total         5.667     8.667     8.333     7.556  

-------------------------------------------------- 

 

Means for each variable 

 

-------------------------------------------------- 

         A     1         2         3        Total 

-------------------------------------------------- 

              5.667     8.667     8.333     7.556  

-------------------------------------------------- 

 

-------------------------------------------------- 

         B     1         2         3        Total 

-------------------------------------------------- 

              5.667     8.667     8.333     7.556  

-------------------------------------------------- 
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-------------------------------------------------- 

     Latin     1         2         3        Total 

-------------------------------------------------- 

              6.667     7.333     8.667     7.556  

-------------------------------------------------- 

 

-------------------------------------------------- 

     Greek     1         2         3        Total 

-------------------------------------------------- 

              8.667     7.000     7.000     7.556  

-------------------------------------------------- 

 

Notice that in the case of 3 levels that the residual degrees of freedom are 0 hence no term is shown for the residual 

in this example.  For more than 3 levels the test of the residuals provides a partial check on the assumptions of 

negligible interactions.  The residual is sometimes combined with the within cell variance to provide an over-all 

estimate of variation due to experimental error. 
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Plan 5 Latin Square Design 

 

The specifications for the analysis of the sample file “LatinPlan5.LAZ” is shown below: 

 

 

Fig. 6.16  Latin Square Plan 5 Form 

 

If you examine the sample file, you will notice that the subject Identification numbers (1,2,3,4) for the subjects in 

each group are the same even though the subjects in each group are different from group to group.  The same ID is 

used in each group because they become “subscripts” for several arrays in the program.  The results for our sample 

data are shown below: 

 
Greco-Latin Square Analysis (No Interactions) 

 

----------------------------------------------------------- 

Source         SS        DF        MS        F      Prob.>F 

----------------------------------------------------------- 

Factor A     64.889         2    32.444     9.733     0.001 

Factor B     64.889         2    32.444     9.733     0.001 

Latin Sqr.   24.889         2    12.444     3.733     0.037 

Greek Sqr.   22.222         2    11.111     3.333     0.051 

Residual      -         -          -         -         - 

Within       90.000        27     3.333 

Total       266.889        35 

----------------------------------------------------------- 

 

Experimental Design for Latin Square  

------------------------------ 

         B   1    2    3  

------------------------------ 

         A 

     1       C1   C2   C3 

     2       C2   C3   C1 

     3       C3   C1   C2 

------------------------------ 

 

Experimental Design for Greek Square  
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------------------------------ 

         B   1    2    3  

------------------------------ 

         A 

     1       C1   C2   C3 

     2       C3   C1   C2 

     3       C2   C3   C1 

------------------------------ 

 

Cell means and totals 

-------------------------------------------------- 

         B     1         2         3        Total 

-------------------------------------------------- 

         A 

     1        4.000     6.000     7.000     5.667  

     2        6.000    12.000     8.000     8.667  

     3        7.000     8.000    10.000     8.333  

Total         5.667     8.667     8.333     7.556  

-------------------------------------------------- 

 

Means for each variable 

 

-------------------------------------------------- 

         A     1         2         3        Total 

-------------------------------------------------- 

              5.667     8.667     8.333     7.556  

-------------------------------------------------- 

 

-------------------------------------------------- 

         B     1         2         3        Total 

-------------------------------------------------- 

              5.667     8.667     8.333     7.556  

-------------------------------------------------- 

 

-------------------------------------------------- 

     Latin     1         2         3        Total 

-------------------------------------------------- 

              6.667     7.333     8.667     7.556  

-------------------------------------------------- 

 

-------------------------------------------------- 

     Greek     1         2         3        Total 

-------------------------------------------------- 

              8.667     7.000     7.000     7.556  

-------------------------------------------------- 

Sums for ANOVA Analysis 

 

 

Group (rows) times A Factor (columns) sums with   36 cases. 

 

 

Variables 

                      1            2            3        Total 

         1      14.000       19.000       18.000       51.000  

         2      15.000       18.000       16.000       49.000  

         3      14.000       21.000       18.000       53.000  

     Total      43.000       58.000       52.000      153.000  

 

 

 

 

Group (rows) times B (cells Factor) sums with   36 cases. 

 

 

Variables 

                      1            2            3        Total 

         1      19.000       18.000       14.000       51.000  

         2      15.000       18.000       16.000       49.000  

         3      18.000       14.000       21.000       53.000  

     Total      52.000       50.000       51.000      153.000  
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Groups (rows) times Subjects (columns) matrix with   36 cases. 

 

 

Variables 

                      1            2            3            4        Total 

         1      13.000       11.000       13.000       14.000       51.000  

         2      10.000       14.000       10.000       15.000       49.000  

         3      13.000        9.000       17.000       14.000       53.000  

     Total      36.000       34.000       40.000       43.000      153.000  

 

Latin Squares Repeated Analysis Plan 5 (Partial Interactions) 

 

----------------------------------------------------------- 

Source         SS        DF        MS        F      Prob.>F 

----------------------------------------------------------- 

Betw.Subj.   20.083        11 

 Groups       0.667         2     0.333     0.155     0.859 

 Subj.w.g.   19.417         9     2.157 

 

Within Sub   36.667        24 

 Factor A     9.500         2     4.750     3.310     0.060 

 Factor B     0.167         2     0.083     0.058     0.944 

 Factor AB    1.167         2     0.583     0.406     0.672 

 Error w.    25.833        18     1.435 

Total        56.750        35 

----------------------------------------------------------- 

 

Experimental Design for Latin Square  

------------------------------ 

   A (Col)   1    2    3  

------------------------------ 

Group (row) 

     1       B3   B1   B2 

     2       B1   B2   B3 

     3       B2   B3   B1 

------------------------------ 

 

Cell means and totals 

-------------------------------------------------- 

   A (Col)     1         2         3        Total 

-------------------------------------------------- 

Group (row) 

     1        3.500     4.750     4.500     4.250  

     2        3.750     4.500     4.000     4.083  

     3        3.500     5.250     4.500     4.417  

Total         3.583     4.833     4.333     4.250  

-------------------------------------------------- 

 

Means for each variable 

 

-------------------------------------------------- 

   A (Col)     1         2         3        Total 

-------------------------------------------------- 

              4.333     4.167     4.250     4.250  

-------------------------------------------------- 

 

-------------------------------------------------- 

  B (Cell)     1         2         3        Total 

-------------------------------------------------- 

              4.250     4.083     4.417     4.250  

-------------------------------------------------- 

 

-------------------------------------------------- 

Group (row)     1         2         3        Total 

-------------------------------------------------- 

              4.250     4.083     4.417     4.250  

-------------------------------------------------- 

Plan 6 Latin Squares Design 

 

LatinPlan6.LAZ is the name of a sample file which you can analyze with the Plan 6 option of the Latin squares 

analysis procedure.  Shown below is the specification form for the analysis of the data in that file: 
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Fig. 6.17   Latin Square Plan 6 Form 

 

The results obtained when you click the OK button are shown below: 

 
Latin Squares Repeated Analysis Plan 6 

 

Sums for ANOVA Analysis 

 

Group - C (rows) times A Factor (columns) sums with   36 cases. 

 

Variables 

                      1            2            3        Total 

         1      23.000       16.000       22.000       61.000  

         2      22.000       14.000       18.000       54.000  

         3      24.000       21.000       21.000       66.000  

     Total      69.000       51.000       61.000      181.000  

 

 

Group - C (rows) times B (cells Factor) sums with   36 cases. 

 

Variables 

                      1            2            3        Total 

         1      16.000       22.000       23.000       61.000  

         2      22.000       14.000       18.000       54.000  

         3      21.000       24.000       21.000       66.000  

     Total      59.000       60.000       62.000      181.000  

 

Group - C (rows) times Subjects (columns) matrix with   36 cases. 

 

Variables 

                      1            2            3            4        Total 

         1      16.000       14.000       13.000       18.000       61.000  

         2      12.000       13.000       14.000       15.000       54.000  

         3      18.000       19.000       11.000       18.000       66.000  

     Total      46.000       46.000       38.000       51.000      181.000  

 

Latin Squares Repeated Analysis Plan 6 

 

----------------------------------------------------------- 
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Source         SS        DF        MS        F      Prob.>F 

----------------------------------------------------------- 

Betw.Subj.   26.306        11 

 Factor C     6.056         2     3.028     1.346     0.308 

 Subj.w.g.   20.250         9     2.250 

 

Within Sub   70.667        24 

 Factor A    13.556         2     6.778     2.259     0.133 

 Factor B     0.389         2     0.194     0.065     0.937 

 Residual     2.722         2     1.361     0.454     0.642 

 Error w.    54.000        18     3.000 

Total        96.972        35 

----------------------------------------------------------- 

 

Experimental Design for Latin Square  

------------------------------ 

   A (Col)   1    2    3  

------------------------------ 

  G    C   

  1    1     B3   B1   B2 

  2    2     B1   B2   B3 

  3    3     B2   B3   B1 

------------------------------ 

 

Cell means and totals 

-------------------------------------------------- 

   A (Col)     1         2         3        Total 

-------------------------------------------------- 

   Group+C 

     1        5.750     4.000     5.500     5.083  

     2        5.500     3.500     4.500     4.500  

     3        6.000     5.250     5.250     5.500  

Total         5.750     4.250     5.083     5.028  

-------------------------------------------------- 

 

Means for each variable 

 

-------------------------------------------------- 

   A (Col)     1         2         3        Total 

-------------------------------------------------- 

              4.917     5.000     5.167     5.028  

-------------------------------------------------- 

 

-------------------------------------------------- 

  B (Cell)     1         2         3        Total 

-------------------------------------------------- 

              5.083     4.500     5.500     5.028  

-------------------------------------------------- 

 

-------------------------------------------------- 

   Group+C     1         2         3        Total 

-------------------------------------------------- 

              5.083     4.500     5.500     5.028  

-------------------------------------------------- 
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Plan 7 for Latin Squares 

 

Shown below is the specification for analysis of the sample data file labeled LatinPlan7.LAZ and the results of the 

analysis: 

 

 

Fig. 6.18   Latin Squares Repeated Analysis Plan 7 (Superimposed Squares) 

 
Latin Squares Repeated Analysis Plan 7 (superimposed squares) 

 

Sums for ANOVA Analysis 

 

 

Group (rows) times A Factor (columns) sums with   36 cases. 

 

 

Variables 

                      1            2            3        Total 

         1      23.000       16.000       22.000       61.000  

         2      22.000       14.000       18.000       54.000  

         3      24.000       21.000       21.000       66.000  

     Total      69.000       51.000       61.000      181.000  

 

 

 

 

Group (rows) times B (cells Factor) sums with   36 cases. 

 

 

Variables 

                      1            2            3        Total 

         1      23.000       16.000       22.000       61.000  

         2      18.000       22.000       14.000       54.000  

         3      21.000       21.000       24.000       66.000  

     Total      62.000       59.000       60.000      181.000  
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Group (rows) times C (cells Factor) sums with   36 cases. 

 

 

Variables 

                      1            2            3        Total 

         1      23.000       22.000       16.000       61.000  

         2      14.000       22.000       18.000       54.000  

         3      21.000       21.000       24.000       66.000  

     Total      58.000       65.000       58.000      181.000  

 

 

 

 

Group (rows) times Subjects (columns) sums with   36 cases. 

 

 

Variables 

                      1            2            3            4        Total 

         1      16.000       14.000       13.000       18.000       61.000  

         2      12.000       13.000       14.000       15.000       54.000  

         3      18.000       19.000       11.000       18.000       66.000  

     Total      46.000       46.000       38.000       51.000      181.000  

 

Latin Squares Repeated Analysis Plan 7 (superimposed squares) 

 

----------------------------------------------------------- 

Source         SS        DF        MS        F      Prob.>F 

----------------------------------------------------------- 

Betw.Subj.   26.306        11 

 Groups       6.056         2     3.028     1.346     0.308 

 Subj.w.g.   20.250         9     2.250 

 

Within Sub   70.667        24 

 Factor A    13.556         2     6.778     2.259     0.133 

 Factor B     0.389         2     0.194     0.065     0.937 

 Factor C     2.722         2     1.361     0.454     0.642 

 residual      -            0      - 

 Error w.    54.000        18     3.000 

Total        96.972        35 

----------------------------------------------------------- 

 

Experimental Design for Latin Square  

------------------------------ 

   A (Col)   1    2    3  

------------------------------ 

     Group 

     1     BC11 BC23 BC32 

     2     BC22 BC31 BC13 

     3     BC33 BC12 BC21 

------------------------------ 

 

Cell means and totals 

-------------------------------------------------- 

   A (Col)     1         2         3        Total 

-------------------------------------------------- 

     Group 

     1        5.750     4.000     5.500     5.083  

     2        5.500     3.500     4.500     4.500  

     3        6.000     5.250     5.250     5.500  

Total         5.750     4.250     5.083     5.028  

-------------------------------------------------- 

 

Means for each variable 

 

-------------------------------------------------- 

   A (Col)     1         2         3        Total 

-------------------------------------------------- 

              5.750     4.250     5.083     5.028  

-------------------------------------------------- 

 

-------------------------------------------------- 

  B (Cell)     1         2         3        Total 

-------------------------------------------------- 
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              5.167     4.917     5.000     5.028  

-------------------------------------------------- 

 

-------------------------------------------------- 

  C (Cell)     1         2         3        Total 

-------------------------------------------------- 

              4.833     5.417     4.833     5.028  

-------------------------------------------------- 

 

-------------------------------------------------- 

     Group     1         2         3        Total 

-------------------------------------------------- 

              5.083     4.500     5.500     5.028  

-------------------------------------------------- 

 

Plan 9 Latin Squares 

 

The sample data set labeled “LatinPlan9.LAZ” is used for the following analysis.  The specification form shown 

below has the variables entered for the analysis.  When you click the OK button, the results obtained are as shown 

following the form. 

 

 

Fig. 6.19   Latin Squares Repeated Analysis Plan 9 

Latin Squares Repeated Analysis Plan 9 

 

Sums for ANOVA Analysis 

 

ABC matrix 

 

C level 1 

              1         2         3      

    1        13.000     3.000     9.000  

    2         6.000     9.000     3.000  

    3        10.000    14.000    15.000  
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C level 2 

              1         2         3      

    1        18.000    14.000    18.000  

    2        19.000    24.000    20.000  

    3         8.000    11.000    10.000  

 

 

C level 3 

              1         2         3      

    1        17.000    12.000    20.000  

    2        14.000    13.000     9.000  

    3        15.000    12.000    17.000  

 

 

 

AB sums with   27 cases. 

 

 

Variables 

                      1            2            3        Total 

         1      48.000       29.000       47.000      124.000  

         2      39.000       46.000       32.000      117.000  

         3      33.000       37.000       42.000      112.000  

     Total     120.000      112.000      121.000      353.000  

 

 

 

 

AC sums with   27 cases. 

 

 

Variables 

                      1            2            3        Total 

         1      25.000       50.000       49.000      124.000  

         2      18.000       63.000       36.000      117.000  

         3      39.000       29.000       44.000      112.000  

     Total      82.000      142.000      129.000      353.000  

 

 

 

 

BC sums with   27 cases. 

 

 

Variables 

                      1            2            3        Total 

         1      29.000       45.000       46.000      120.000  

         2      26.000       49.000       37.000      112.000  

         3      27.000       48.000       46.000      121.000  

     Total      82.000      142.000      129.000      353.000  

 

 

 

 

RC sums with   27 cases. 

 

 

Variables 
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                      1            2            3        Total 

         1      16.000       42.000       36.000       94.000  

         2      37.000       52.000       47.000      136.000  

         3      29.000       48.000       46.000      123.000  

     Total      82.000      142.000      129.000      353.000  

 

 

 

 

Group totals with   27 valid cases. 

 

Variables            1            2            3            4            5 

                16.000       37.000       29.000       42.000       52.000  

 

Variables            6            7            8            9        Total 

                48.000       36.000       47.000       46.000      353.000  

 

 

Subjects sums with   27 valid cases. 

 

Variables            1            2            3            4            5 

                 7.000        9.000       14.000       28.000       15.000  

 

Variables            6            7            8            9           10 

                21.000       16.000       21.000       22.000       30.000  

 

Variables           11           12           13           14           15 

                28.000       19.000       10.000       19.000       23.000  

 

Variables           16           17           18        Total 

                25.000       28.000       18.000        0.000  

 

Computation Terms 

Term1 =  1538.383 

term2 =  2811.000 

term3 =  1541.074 

term4 =  1540.185 

term5 =  1612.185 

term6 =  1581.889 

term7 =  1712.556 

term8 =  1619.667 

term9 =  1769.667 

term10 =  2575.000 

term11 =  1651.000 

term12 =  1572.630 

 

Latin Squares Repeated Analysis Plan 9 

 

----------------------------------------------------------- 

Source         SS        DF        MS        F      Prob.>F 

----------------------------------------------------------- 

Betw.Subj. 1036.617        26 

 Factor C    73.802         2    36.901     0.719     0.501 

 Rows        34.247         2    17.123     0.334     0.721 

 C x row      4.568         4     1.142     0.022     0.999 

 Subj.w.g.  924.000        18    51.333 

 

Within Sub  236.000        54 

 Factor A     2.691         2     1.346     0.413     0.665 
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 Factor B     1.802         2     0.901     0.277     0.760 

 Factor AC   97.679         4    24.420     7.492     0.000 

 Factor BC    5.679         4     1.420     0.436     0.782 

 AB prime     4.765         2     2.383     0.731     0.488 

 ABC prime    6.049         4     1.512     0.464     0.762 

 Error w.   117.333        36     3.259 

 

Total      1272.617        80 

 

Experimental Design for Latin Square  

 

------------------------------ 

   FactorA   1    2    3  

------------------------------ 

     Group 

     1       B2   B3   B1 

     2       B1   B2   B3 

     3       B3   B1   B2 

     4       B2   B3   B1 

     5       B1   B2   B3 

     6       B3   B1   B2 

     7       B2   B3   B1 

     8       B1   B2   B3 

     9       B3   B1   B2 

 

Latin Squares Repeated Analysis Plan 9 

 

Means for ANOVA Analysis 

 

ABC matrix 

 

C level 1 

              1         2         3      

    1         4.333     1.000     3.000  

    2         2.000     3.000     1.000  

    3         3.333     4.667     5.000  

 

 

C level 2 

              1         2         3      

    1         6.000     4.667     6.000  

    2         6.333     8.000     6.667  

    3         2.667     3.667     3.333  

 

 

C level 3 

              1         2         3      

    1         5.667     4.000     6.667  

    2         4.667     4.333     3.000  

    3         5.000     4.000     5.667  

 

 

 

AB Means with   81 cases. 

 

 

Variables 

                      1            2            3            4 

         1       5.333        3.222        5.222        4.593  
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         2       4.333        5.111        3.556        4.333  

         3       3.667        4.111        4.667        4.148  

     Total       4.444        4.148        4.481        4.358  

 

 

 

 

AC Means with   81 cases. 

 

 

Variables 

                      1            2            3            4 

         1       2.778        5.556        5.444        4.593  

         2       2.000        7.000        4.000        4.333  

         3       4.333        3.222        4.889        4.148  

     Total       3.037        5.259        4.778        4.358  

 

 

 

 

BC Means with   81 cases. 

 

 

Variables 

                      1            2            3            4 

         1       3.222        5.000        5.111        4.444  

         2       2.889        5.444        4.111        4.148  

         3       3.000        5.333        5.111        4.481  

     Total       3.037        5.259        4.778        4.358  

 

 

 

 

RC Means with   81 cases. 

 

 

Variables 

                      1            2            3            4 

         1       1.778        4.667        4.000        3.481  

         2       4.111        5.778        5.222        5.037  

         3       3.222        5.333        5.111        4.556  

     Total       3.037        5.259        4.778        4.358  

 

 

 

 

Group Means with   81 valid cases. 

 

Variables            1            2            3            4            5 

                 1.778        4.111        3.222        4.667        5.778  

 

Variables            6            7            8            9        Total 

                 5.333        4.000        5.222        5.111        4.358  

 

 

Subjects Means with   81 valid cases. 

 

Variables            1            2            3            4            5 

                 2.333        3.000        4.667        9.333        5.000  
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Variables            6            7            8            9           10 

                 7.000        5.333        7.000        7.333       10.000  

 

Variables           11           12           13           14           15 

                 9.333        6.333        3.333        6.333        7.667  

 

Variables           16           17           18        Total 

                 8.333        9.333        6.000        4.358  

 

 

Analysis of Variance Using Multiple Regression Methods 

A Comparison of ANOVA and Regression 

 

 In one-way analysis of variance with Fixed Effects, the model that describes the expected Y score is 

usually given as 

 

     Yi,j =  μ + αj + ei,j        (6.27) 

 

     where Yi,j is the observed dependent variable score for subject i in treatment group j, 

 

     μ is the population mean of the Y scores, 

 

     αj is the effect of treatment j, and 

 

     ei,j is the deviation of subject i in the jth treatment  group from the population mean for that group. 

 

The above equation may be rewritten with sample estimates as 

 

                _        _      _ 

     Y'i,j = Y.. + (Y.j - Y..)        (6.28) 

 

For any given subject then, irrespective of group, we have 

 

              _        _       _                    _       _ 

     Y'i = Y.. + (Y.1 - Y..)X1 + ... + (Y.k - Y..)Xk     (6.29) 

 

     where Xj is 1 if the subject is in the group, otherwise 0. 

                       _                             _      _ 

If we let B0 = Y.. and the effects (Y.j - Y..) be Bj for any group, we may rewrite the above equation as 

 

      

     Y'i = B0 + B1X1 + ... + BkXk       (6.30) 

 

 

This is, of course, the general model for multiple regression!  In other words, the model used in ANOVA may be 

directly translated to the multiple regression model.  They are essentially the same model! 

 

 You will notice that in this model, each subject has K predictors X.  Each predictor is coded a 1 if the 

subject is in the group, otherwise 0.  If we create a variable for each group however, we do not have independence of 

the predictors.  We lack independence because one group code is redundant information with the K-1 other group 

codes.  For example, if there is only two groups and a subject is in group 1, then X1 = 1 and X2 MUST BE 0 since an 

individual cannot belong in both groups.  There are only K-1 degrees of freedom for group membership - if an 

individual is not in groups 1 up to K we automatically know they belong to the Kth group.  In order to use multiple 

regression, the predictor variables must be independent.  For this reason, the number of predictors is restricted to one 
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less than the number of groups.  Since all αj effects must sum to zero, we need only know the first K-1 effects - the 

last can be obtained by subtraction from 1 - Σ αj where j = 1,..,K-1. 

 

 We also remember that  

 

              _           _                 _ 

     B0 = Y.. - (B1X1 + ... + BkXk).       (6.31) 

 

Effect Coding 

 

 In order for B0 to equal the grand mean of the Y scores, we must restrict our model in such a way that the 

sum of the products of the X means and regression coefficients equals zero.  This may be done by use of "effect" 

coding.  In this method there are K-1 independent variables for each subject.  If a subject is in the group 

corresponding to the jth variable, he or she has a score Xj = 1 otherwise the score is Xj = 0.  Subjects in the Kth 

group do not have a corresponding X variable so they receive a score of _1 in all of the group codes. 

 

 As an example, assume that you have 5 subjects in each of three groups.  The "effect" coding of predictor 

variables would be 

 
SUBJECT   Y         CODE 1         CODE 2 

 

01        5         1              0 

02        8         1              0 

03        4         1              0          (Group 1) 

04        7         1              0 

05        3         1              0 

 

06        4         0              1 

07        6         0              1 

08        2         0              1          (Group 2) 

09        9         0              1 

10        4         0              1 

 

11        3         -1             -1 

12        6         -1             -1 

13        5         -1             -1         (Group 3) 

14        9         -1             -1 

15        4         -1             -1 

 
 You may notice that the mean of X1 and of X2 are both zero.  The cross-products of X1X2 is n3, the size of 

the last group. 

 

 If we now perform a multiple regression analysis as well as a regular ANOVA for the data above, we will 

obtain the following results: 

------------------------------------------------------- 
SOURCE                DF          SS         MS        F    PROB>F 

------------------------------------------------------------------ 

          Full Model   2       0.533      0.267      0.048  0.953 

              Groups   2       0.533      0.267      0.048  0.953 

            Residual  12      66.400      5.533 

               Total  14      66.933 

 

_______________________________________________________ 

R
2
 = 0.008 

_______________________________________________________ 
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You will note that the SSgroups may be obtained from either the ANOVA printout or the SSreg in the Multiple 

Regression analysis.  The SSerror is the same in both analyses as is the total sum of squares. 

Orthogonal Coding 

 

 While effect coding provides the means of directly estimating the effect of membership in levels or 

treatment groups, the correlations among the independent variables are not zero, thus the inverse of that matrix may 

be difficult if done by hand.  Of greater interest however, is the ability of other methods of data coding that permits 

the research to pre-specify contrasts or comparisons among particular treatment groups of interest.  The method of 

orthogonal coding has several benefits: 

 

I.      The user can pre-plan comparisons among selected groups or treatments, and 

 

II.      the inter-correlation matrix is a diagonal matrix,  that is, all off-diagonal values are zero. This results in a solution 

for the regression  coefficients which can easily be calculated by  hand. 

 

 When orthogonal coding is utilized, there are K-1possible orthogonal comparisons in each factor.  For 

example, if there are four treatment levels of Factor A, there are 3 possible orthogonal comparisons that may be 

made among the treatment means.  To illustrate orthogonal coding, we will utilize the same example as before.  The 

previous effect coding will be replaced by orthogonal coding as illustrated in the data below: 

 
SUBJECT   Y         CODE 1         CODE 2 

 

01        5         1              1 

02        8         1              1 

03        4         1              1          (Group 1) 

04        7         1              1 

05        3         1              1 

 

06        4         -1             1 

07        6         -1             1 

08        2         -1             1          (Group 2) 

09        9         -1             1 

10        4         -1             1 

 

11        3         0              -2 

12        6         0              -2 

13        5         0              -2         (Group 3) 

14        9         0              -2 

15        4         0              -2 

 
Now notice that, as before, the sum of the values in each coding vector is zero.  Also note that, in this case, the 

product of the coding vectors is also zero.  (Multiply the code values of two vectors for each subject and add up the 

products - they should sum to zero.)  Vector 1 above (Code 1) represents a comparison of treatment group 1 with 

treatment group 2.  Vector 2 represents a comparison of groups 1 AND 2 with group 3. 

 

 Now let us look at coding for, say, 5 treatment groups.  The coding vectors below might be used to obtain 

orthogonal contrasts: 
 

GROUP VECTOR 1      VECTOR 2       VECTOR 3       VECTOR 4 

  1       1              1              1              1 

 

  2      -1              1              1              1 

 

  3       0             -2              1              1 

 

  4       0              0             -3              1 
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  5       0              0              0             -4 

 
 As before, the sum of coefficients in each vector is  zero and the product of any two vectors is also zero.  

This assumes that there are the same number of subjects in each group.  If groups are different in size, one may use 

additional multipliers based on the proportion of the total sample found in each group.  The treatment group number 

in the left column may, of course, represent any one of the treatment groups thus it is possible to select a specific 

comparison of interest by assigning the treatment groups in the order necessary to obtain the comparison of interest. 

 

 Return now to the previous example.  The results from the regression analysis  program as well as the 

ANOVA program are presented in the Fig.s below.  The first Fig. presents the inter-correlation matrix among the 

variables.  Notice that the inter-correlations among the coding vectors are zero.  The next Fig. presents the R
2
 and 

the summary of regression coefficients.  Multiplication of the R
2
 times the sum of squares for the dependent variable 

will yield the sum of squares for regression.  This will equal the sum of squares for groups in the subsequent 

ANOVA results table.  By use of orthogonal vectors, we may also note that the regression coefficients are simply 

the correlation of each vector with the dependent variable.  Multiplication of the squared regression coefficients 

times the sum of squares total will therefore give the sum of squares due to each contrast.  The total sum of squares 

for groups is simply the sum of the sum of squares for each contrast!  The test of departure of the regression 

coefficients from zero is a test of significance for the contrast in the corresponding coding vector.  The a priori 

specified contrasts, unlike post-hoc comparisons maintain the selected alpha rate and more power.  Hence, 

sensitivity to true population treatment effects are more likely to be detected by the planned comparison than by a 

post-hoc comparison. 

Dummy Coding 

 

 Effect and orthogonal coding methods both resulted in code vectors which summed to zero across the 

subjects.  In each of those cases, the constant B0 estimates the population mean since it is the grand mean of the 

sample (see equation 9).  Both methods of coding also resulted in the same squared multiple correlation coefficient 

R
2
 indicating that the proportion of variance explained by both methods is the same. 

 

 Another method of coding which is popular is called "dummy" coding.  In this method, K-1 vectors are also 

created for the coding of membership in the K treatment groups.  However, the sum of the coded vectors do not add 

to zero as in the previous two methods.  In this coding scheme,  if a subject is a member of treatment group 1, the 

subject receives a code of 1.  All other treatment group subjects receive a code of 0.  For a second vector (where 

there are more than two treatment groups), subjects that are in the second treatment group are coded with a 1 and all 

other treatment group subjects are coded 0.  This method continues for the K-1 groups.  Clearly, members of the last 

treatment group will have a code of zero in all vectors.  The coding of members in each of five treatment groups is 

illustrated below: 

 
GROUP VECTOR 1      VECTOR 2       VECTOR 3       VECTOR 4 

 

  1       1              0              0              0 

  2       0              1              0              0 

 

  3       0              0              1              0 

 

  4       0              0              0              1 

 

  5       0              0              0              0 

 
 With this method of coding, like that of effect coding, there will be correlations among the coding vectors 

which differ from zero thus necessitating the computation of the inverse of a symmetric matrix rather than a 

diagonal matrix.  Never the less, the squared multiple correlation coefficient R
2
 will be the same as with the other 

coding methods and therefore the SSreg will again reflect the treatment effects.  Unfortunately, the resulting 

regression coefficients reflect neither the direct effect of each treatment or a comparison among treatment groups.  

In addition, the constant B0 reflects the mean only of the treatment group (last group) which receives all zeroes in 

the coding vectors.  If however, the overall effects of treatment is the finding of interest, dummy coding will give the 

same results. 



Statistics and Measurement Concepts for LazStats   William G. Miller ©2012 

 

 239 

 

Two Factor ANOVA by Multiple Regression 

 

 In the above examples of effect, orthogonal and dummy coding of treatments, we dealt only with levels of a 

single treatment factor.  We may, however, also analyze multiple factor designs by multiple regression using each of 

these same coding methods.  For example, a two-way analysis of variance using two treatment factors will typically 

provide the test of effects for the A factor, the B factor and the interaction of the A and B treatments.  We will 

demonstrate the use of effect, orthogonal and dummy coding for a typical research design involving three levels of 

an A treatment and four levels of a B treatment. 

 
                       Example Design 

 

                         Levels of Treatment B 

               _________________________________________ 

               |    1    |    2    |    3    |    4    | 

               _________________________________________ 

Levels      1  |         |         |         |         | 

               |_________|_________|_________|_________| 

of          2  |         |         |         |         | 

               |_________|_________|_________|_________| 

Treatment   3  |         |         |         |         | 

               |         |         |         |         | 

A              ________________________________________ 

 

 
 For effect coding in the above design, we apply effect codes to the A treatment levels first and then, 

beginning again, to the B treatment levels independently of the A codes.  Finally, we multiple each of the code 

vectors of the A treatments times each of the code vectors of the B treatment to create the interaction vectors.  The 

vectors below illustrate this for the above design: 

 
           A       B                 A x B 

 

         X1 X2   X3 X4 X5    X6   X7   X8    X9    X10   X11 

 

         _____  ________  ____________________________ 

 

ROW COL  A1 A2   B1 B2 B3   A1B1  A1B2  A1B3  A2B1  A2B2  A2B3 

 

 1   1   1  0   1  0  0    1    0    0    0    0    0 

 

 1   2   1  0   0  1  0    0    1    0    0    0    0 

 

 1   3   1  0   0  0  1    0    0    1    0    0    0 

 

 1   4   1  0  -1 -1 -1   -1   -1   -1    0    0    0 

 

 

 2   1   0  1   1  0  0    0    0    0    1    0    0 

 

 2   2   0  1   0  1  0    0    0    0    0    1    0 

 

 2   3   0  1   0  0  1    0    0    0    0    0    1 

 

 2   4   0  1  -1 -1 -1    0    0    0   -1   -1   -1 
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 3   1  -1 -1   1  0  0   -1    0    0   -1    0    0 

 

 3   2  -1 -1   0  1  0    0   -1    0    0   -1    0 

 

 3   3  -1 -1   0  0  1    0    0   -1    0    0   -1 

 

 3   4  -1 -1  -1 -1 -1    1    1    1    1    1    1 

 

 
 If you add the values in any one of the vectors above you will see they sum to zero.  In addition, the 

product of any two vectors selected from a combination of treatment A, B or AxB sets will also be zero!  With effect 

coding, the treatment effect vectors from one factor are orthogonal (uncorrelated) with the treatment effect vectors 

of the other factor as well as the interaction effect vectors.  The effect vectors within each treatment or interaction 

are not, however, orthogonal. 

 

 With effect coding, we may "decompose" the R
2
 for the full model into the three separate parts, that is 

 

      R
2
y.1 2 3 4 5 6 7 8 9 10 11 =   R

2
y.1 2 + R

2
y.3 4 5 + R

2
y.6 7 8 9 10 11    (6.32) 

 

since the A, B and AxB effects are orthogonal. 

 

 Again, the regression coefficients directly report the effect of treatment group membership, that is, B1 is the 

effect of treatment group 1 in the A factor and B2 is the effect of treatment group 2 in the A factor.  The effect of 

treatment group 3 in the A factor can be obtained as 

 

          α3 = 1 - Σ(α1 +α2) = 1 - (B1 + B2)      (6.33) 

 

since the sum of effects is constrained to equal zero.  Similarly, B3 estimates β1, B4 estimates β2 and B5 estimates the 

B factor effect β3 for column 3.  The effect of column four is also obtained as before, that is, 

 

          β4 = 1 - (B3 + B4 + B5).       (6.34) 

 

ij, may be obtained from the regression coefficients corresponding to the 

interaction vectors.  In this example, B6 estimates αβ11, B7 estimates αβ12, B8 estimates αβ13, B9 estimates αβ21, B10 

estimates αβ22 and B11 estimates αβ23.  Since the sum of the interaction effects in any row or column must be zero, 

we can determine estimates for the cells in rows 1 and 2 of column 4 as follows: 

 

αβ14 = 1 - (B6 + B7 + B8)  and      (6.35) 

 

        αβ24 = 1 - (B9 + B10 + B11).       (6.36) 

 

     We may also utilize orthogonal coding vectors within each treatment factor as we did for effect coding above.  

The same two-factor design above could utilize the vectors below: 

 
           A       B                 A x B 

 

         X1 X2  X3 X4 X5  X6   X7   X8   X9   X10  X11 

 

         _____  ________  ____________________________ 

 

ROW COL  A1 A2  B1 B2 B3  A1B1 A1B2 A1B3 A2B1 A2B2 A2B3 

 

 1   1   1  1   1  1  1    1    1    1    1    1    1 

 

 1   2   1  1  -1  1  1   -1    1    1   -1    1    1 

 

 1   3   1  1   0 -2  1    0   -2    1    0   -2    1 
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 1   4   1  1   0  0 -3    0    0   -3    0    0   -3 

 

 

 

 2   1  -1  1   1  1  1   -1   -1   -1    1    1    1 

 

 2   2  -1  1  -1  1  1    1   -1   -1   -1    1    1 

 

 2   3  -1  1   0 -2  1    0    2   -1    0   -2    1 

 

 2   4  -1  1   0  0 -3    0    0    3    0    0   -3 

 

 

 

 3   1   0 -2   1  1  1    0    0    0   -2   -2   -2 

 

 3   2   0 -2  -1  1  1    0    0    0    2   -2   -2 

 

 3   3   0 -2   0 -2  1    0    0    0    0    4   -2 

 

 3   4   0 -2   0  0 -3    0    0    0    0    0    6 

 
 As before, the sum of each vector is zero.  This time however, the product of vectors within each factor as 

well as between factors and interaction are zero.  All vectors are orthogonal to one another.  The inter-correlation 

matrix is therefore a diagonal matrix and easily inverted by hand.  The R
2
 for the full model may be easily 

decomposed into the sum of squared simple correlations between the dependent and independent score vectors, that 

is 

 

     R
2

y.1 2 3 4 5 6 7 8 9 10 11 = 

 

          r
2
y.1 + r

2
y.2 +                     (row effects) 

 

          r
2
y.3 + r

2
y.4 + r

2
y.5 +          (column effects) 

 

          r
2
y.6 + r

2
y.7 + r

2
y.8 + r

2
y.9 + r

2
y.10 + r

2
y.11        (interaction effects)   (6.37) 

 

 The regression coefficients obtained with orthogonal coding vectors represent planned comparisons among 

treatment means.  Using the coding vectors for this example, the B1 coefficient would represent the comparison of 

row 1 mean with row 2 mean.  B2 would represent the contrast of row 3 mean with the combination of rows 1 and 2.  

The coefficients B3, B4 and B5 similarly contrast column means.  The contrasts represented by the interaction vectors 

will reflect comparisons among specific cell combinations.  For example, B7 above will reflect a contrast of the 

combined cells in row 1 column 1 and row 2 column 2 with the combined cells of row 1 column 2 and row 2 column 

1. 

 

Analysis of Covariance By Multiple Regression Analysis 

 

 In the previous sections we have examined methods for coding nominal variables of analysis of variance 

designs to explain the variance of the continuous dependent variable.  We may, however, also include one or more 

independent variables that are continuous and expected to have the same correlation with the dependent variable in 

each treatment group population.  As an example, assume that the two-way ANOVA design discussed in the 

previous section represents an experiment in which Factor A represent three type of learning reinforcement (positive 

only, negative only and combined positive and negative) while Factor B represents four types of learning situations 

(CAI, teacher led, self instruction, and peer tutor).  Assume the dependent variable is a standardized measure of 

Achievement in learning the French language.  Finally, assume the treatment groups are exposed to the treatments 

for a sufficiently long period of time to produce measurable achievement by most students and that the students have 

been randomly assigned to the treatment groups.  It may occur to the reader that achievement in learning a new 
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language might be related to general intelligence as measured, say, by the Stanford-Binet Intelligence Test as well as 

related to prior English achievement measured by a standardized achievement test in English.  Variation in IQ and 

English achievement of subjects in the treatment groups may explain a portion of the within treatment cell variance.  

We prefer to have the within cell variance as small as possible since it is the basis of the mean squared residual used 

in the F tests of our treatment effects.  To accomplish this, we can first extract that portion of total dependent score 

variance explained by IQ and English achievement before examining that portion of the remaining variance 

explainable by our main treatment effects.  Assume therefore, that in addition to the eleven vectors representing 

Factor A level effects, Factor B level effects and Factor interaction effects, we include X12 and X13 predictors of IQ 

and English.  Then the proportion of variance for Factor A effects controlling for IQ and English is  

 

     R
2

y.1 2 3 4 5 6 7 8 9 10 11 12 13 -  R
2

y.3 4 5 6 7 8 9 10 11 12 13 

 

The proportion of French achievement variance due to Factor B treatments controlling for IQ and English would be 

 

     R
2

y.1 2 3 4 5 6 7 8 9 10 11 12 13 -   R
2

y.1 2 6 7 8 9 10 11 12 13 

 

and the proportion of variance due to interaction of Factor A and Factor B controlling for IQ and English would be 

 

     R
2

y.1 2 3 4 5 6 7 8 9 10 11 12 13 -  R
2
y.1 2 3 4 5 12 13 

 

In each of the above, the full model contains all predictors while the restricted model contains all variables except 

those of the effects being evaluated.  The F statistic for testing the hypothesis of equal treatment effects is 

 

                               R
2

full - R
2
restricted         N - Kf - 1 

               F =  ___________________ . _________     (6.38) 

                                  1.0 - R
2
full                Kf - Kr 

 

     where     Kf is the number of predictors in the full model, and 

 

                    Kr is the number of predictors in the restricted model. 

 

The numerator and denominator degrees of freedom for these F statistics is (Kf - Kr) and  

(N - Kf - 1) respectively. 

 

 Analysis of Covariance assumes homogeneity of covariance among the treatment groups (cells) in the 

populations from which the samples are drawn.  If this assumption holds, the interaction of the covariates with the 

main treatment factors (A and B in our example) should not account for significant variance of the dependent 

variable.  You can explicitly test this assumption therefore by constructing a full model which has all of the 

previously included independent variables plus prediction vectors obtained by multiplying each of the treatment 

level vectors times each of the covariates.  In our above example, for instance, we would multiply each of the first 

five vectors times both IQ and English vectors (X12 and X13) resulting in a full model with 10 more variables (23 

predictors in all). 

 

 The R
2
 from our previous full model would be subtracted from the R

2
 for this new full model to determine 

the proportion of variance attributable to heteroscedasticity of the covariance among the treatment groups.  If the F 

statistic for this proportion is significant, we cannot employ the analysis of covarance model.  The implication would 

be that somehow, IQ and prior English achievement interacts differently among the levels of the treatments.   Note 

that in testing this assumption of homogeneity of covariance, we have a fairly large number of variables in the 

regression analysis.  To obtain much power in our F test, we need a considerable number of subjects.  Several 

hundred subjects would not be unreasonable for this study, i.e. 25 subjects per each of the eight treatment groups! 

 

Sums of Squares by Regression 

The General Linear Model 
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 We have seen in the above discussion that the multiple regression method may be used to complete an 

analysis of variance for a single dependent variable.  The model for multiple regression is: 

 

i

k

j

jji eXBy 



1         (6.39)

 

 

where the jth  B value is a coefficient multiplied times the jth  independent predictor score, Y is the observed 

dependent score and e is the error (difference between the observed and the value predicted for Y using the sum of 

weighted independent scores.) 

 

 In some research  it is desirable to determine the relationship between  multiple dependent variables and 

multiple independent variables.  Of course, one could complete a multiple regression analysis for each dependent 

variable but this would ignore the possible relationships among the dependent variables themselves.  For example, a 

teacher might be interested in the relationship between the sub-scores on a standardized achievement test 

(independent variables) and the final examination results for several different courses (dependent variables.)  Each 

of the final examination scores could be predicted by the sub-scores in separate analyses but most likely the interest 

is in knowing how well the sub-scores account for the combined variance of the achievement scores.    By assigning 

weights to each of the dependent variables as well as the independent variables in such a way that the composite 

dependent score is maximally related to the composite independent score we can quantify the relationship between 

the two composite scores.  We note that the squared product-moment correlation coefficient reflects the proportion 

of variance of a dependent variable predicted by the independent variable.   

 

 We can express the model for the general linear model as: 

 

EBXYM          (6.40) 

 

where Y is an n (the number of subjects) by  m (the number of dependent variables) matrix of dependent variable 

values, M is a m by s (number of coefficient sets), X is a n by k (the number of independent variables) matrix, B is a 

k by s matrix of coefficients and E is a vector of errors for the n subjects.   

 

 The General Linear Model (GLM) procedure is an analysis procedure that encompasses a variety of 

analyses.  It may incorporate multiple linear regression as well as canonical correlation analysis as methods for 

analyzing the user's data.  In some commercial statistics packages the GLM method also incorporates non-linear 

analyses, maximum-likelihood procedures and a variety of tests not found in the current version of this model.  The 

version in LazStats is currently limited to a single dependent variable (continuous measure.)  You should complete 

analyses with multiple dependent variables with the Canonical Correlation procedure. 

 

 One can complete a variety of analyses of variance with the GLM procedure including multiple factor 

ANOVA and repeated and mixed model ANOVAs. 

 

 The output of the GLM can be somewhat voluminous in that the effects of treatment variables and 

covariates are analyzed individually by comparing regression models with and without those variables. 

 

Analysis of Variance Using Multiple Regression Methods 

An Example of an Analysis of Covariance 

 

 We will demonstrate the analysis of covariance procedure using multiple regression by loading the file 

labeled “Ancova2.LAZ”.  In this file we have a treatment group code for four groups, a dependent variable (X) and 

two covariates (Y and Z.)  The procedure is started by selection the “Analysis of Covariance by Regression” option 

in the Comparisons sub-menu under the Statistics menu.  Shown below is the completed specification form for our 

analysis: 
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Fig. 6.20   Analysis of Covariance Form 

 

When we click the Compute button, the following results are obtained: 

 
ANALYSIS OF COVARIANCE USING MULTIPLE REGRESSION 

 

File Analyzed: C:\Users\wgmiller\LazStats\LazStatsData\ANCOVA2.LAZ 

 

 

Model for Testing Assumption of Zero Interactions with Covariates 

 

 

Correlation Matrix with   40 cases. 

 

 

Variables 

                      Y            Z           A1           A2           A3 

         Y       1.000        0.547       -0.199        0.062        0.212  

         Z       0.547        1.000       -0.154       -0.048       -0.077  

        A1      -0.199       -0.154        1.000        0.500        0.500  

        A2       0.062       -0.048        0.500        1.000        0.500  

        A3       0.212       -0.077        0.500        0.500        1.000  

      YxA1      -0.196       -0.157        0.989        0.519        0.519  

      YxA2       0.079       -0.045        0.487        0.988        0.487  

      YxA3       0.221       -0.080        0.472        0.472        0.990  

      ZxA1      -0.188       -0.210        0.968        0.510        0.510  

      ZxA2       0.061       -0.107        0.493        0.970        0.493  

      ZxA3       0.190       -0.102        0.495        0.495        0.964  

         X       0.697        0.653        0.088        0.018        0.053  

 

 

Variables 

                   YxA1         YxA2         YxA3         ZxA1         ZxA2 

         Y      -0.196        0.079        0.221       -0.188        0.061  

         Z      -0.157       -0.045       -0.080       -0.210       -0.107  

        A1       0.989        0.487        0.472        0.968        0.493  

        A2       0.519        0.988        0.472        0.510        0.970  

        A3       0.519        0.487        0.990        0.510        0.493  

      YxA1       1.000        0.516        0.501        0.980        0.522  

      YxA2       0.516        1.000        0.469        0.508        0.980  

      YxA3       0.501        0.469        1.000        0.493        0.476  

      ZxA1       0.980        0.508        0.493        1.000        0.543  

      ZxA2       0.522        0.980        0.476        0.543        1.000  

      ZxA3       0.524        0.493        0.972        0.545        0.527  

         X       0.069        0.029        0.056        0.069        0.020  

 

 

Variables 

                   ZxA3            X 

         Y       0.190        0.697  

         Z      -0.102        0.653  

        A1       0.495        0.088  

        A2       0.495        0.018  

        A3       0.964        0.053  

      YxA1       0.524        0.069  

      YxA2       0.493        0.029  
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      YxA3       0.972        0.056  

      ZxA1       0.545        0.069  

      ZxA2       0.527        0.020  

      ZxA3       1.000        0.038  

         X       0.038        1.000  

 

 

 

 

MEANS with   40 valid cases. 

 

Variables            Y            Z           A1           A2           A3 

                17.550       14.675        0.000        0.000        0.000  

 

Variables         YxA1         YxA2         YxA3         ZxA1         ZxA2 

                -0.400        0.125        0.425       -0.400       -0.125  

 

Variables         ZxA3            X 

                -0.200        7.125  

 

 

VARIANCES with   40 valid cases. 

 

Variables            Y            Z           A1           A2           A3 

                 8.254       13.866        0.513        0.513        0.513  

 

Variables         YxA1         YxA2         YxA3         ZxA1         ZxA2 

               144.349      163.599      174.302      116.759      125.035  

 

Variables         ZxA3            X 

               124.113        4.163  

 

 

STD. DEV.S with   40 valid cases. 

 

Variables            Y            Z           A1           A2           A3 

                 2.873        3.724        0.716        0.716        0.716  

 

Variables         YxA1         YxA2         YxA3         ZxA1         ZxA2 

                12.015       12.791       13.202       10.806       11.182  

 

Variables         ZxA3            X 

                11.141        2.040  

 

 

Analysis of Variance for the Model to Test Regression Homogeneity 

    SOURCE      Deg.F.      SS          MS          F           Prob>F 

 Explained          11      121.43       11.04       7.550      0.0000 

     Error          28       40.94        1.46 

     Total          39      162.38 

 

R Squared =        0.748 

 

 

Model for Analysis of Covariance 

 

 

Correlation Matrix with   40 cases. 

 

 

Variables 

                      Y            Z           A1           A2           A3 

         Y       1.000        0.547       -0.199        0.062        0.212  

         Z       0.547        1.000       -0.154       -0.048       -0.077  

        A1      -0.199       -0.154        1.000        0.500        0.500  

        A2       0.062       -0.048        0.500        1.000        0.500  

        A3       0.212       -0.077        0.500        0.500        1.000  

         X       0.697        0.653        0.088        0.018        0.053  

 

 

Variables 

                      X 

         Y       0.697  

         Z       0.653  



Statistics and Measurement Concepts for LazStats   William G. Miller ©2012 

 

 246 

        A1       0.088  

        A2       0.018  

        A3       0.053  

         X       1.000  

 

 

 

 

MEANS with   40 valid cases. 

 

Variables            Y            Z           A1           A2           A3 

                17.550       14.675        0.000        0.000        0.000  

 

Variables            X 

                 7.125  

 

 

VARIANCES with   40 valid cases. 

 

Variables            Y            Z           A1           A2           A3 

                 8.254       13.866        0.513        0.513        0.513  

 

Variables            X 

                 4.163  

 

 

STD. DEV.S with   40 valid cases. 

 

Variables            Y            Z           A1           A2           A3 

                 2.873        3.724        0.716        0.716        0.716  

 

Variables            X 

                 2.040  

 

 

Test for Homogeneity of Group Regression Coefficients 

Change in R2 = 0.0462. F =      0.854  Prob.> F = 0.5398 with d.f.        6 and       28 

 

R Squared =        0.702 

 

Analysis of Variance for the ANCOVA Model 

    SOURCE      Deg.F.      SS          MS          F           Prob>F 

 Explained           5      113.94       22.79      15.996      0.0000 

     Error          34       48.44        1.42 

     Total          39      162.38 

 

 

 

Unadjusted Group Means for Group Variables Group 

 

Means with   40 valid cases. 

 

Variables                                                     

                 7.400        7.000        7.200        6.900  

 

 

 

Intercepts for Each Group Regression Equation for Variable: Group 

 

Inercepts with   40 valid cases. 

 

Variables      Group 1      Group 2      Group 3      Group 4 

                -2.489       -4.065       -4.363       -4.028  

 

 

 

Adjusted Group Means for Group Variables Group 

 

Means with   40 valid cases. 

 

Variables      Group 1      Group 2      Group 3      Group 4 

                 8.373        6.796        6.498        6.833  

Multiple Comparisons Among Group Means 
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Comparison of Group   1 with Group   2 

F =      8.017, probability = 0.008 with degrees of freedom     1 and    34 

Comparison of Group   1 with Group   3 

F =      9.834, probability = 0.004 with degrees of freedom     1 and    34 

Comparison of Group   1 with Group   4 

F =     16.025, probability = 0.000 with degrees of freedom     1 and    34 

Comparison of Group   2 with Group   3 

F =      0.297, probability = 0.590 with degrees of freedom     1 and    34 

Comparison of Group   2 with Group   4 

F =      1.296, probability = 0.263 with degrees of freedom     1 and    34 

Comparison of Group   3 with Group   4 

F =      0.310, probability = 0.581 with degrees of freedom     1 and    34 

 

Test for Each Source of Variance - Type III SS 

---------------------------------------------------------------------- 

    SOURCE      Deg.F.      SS          MS          F           Prob>F 

---------------------------------------------------------------------- 

 

      Cov0           1       38.11       38.11      26.754      0.0000 

 

      Cov1           1       12.50       12.50       8.778      0.0055 

 

         A           3       17.95        5.98       4.200      0.0124 

---------------------------------------------------------------------- 

     ERROR          34       48.44        1.42 

---------------------------------------------------------------------- 

 

 The results reported above begin with a regression model that includes group coding for the four groups 

(A1, A2 and A3) and again note that the fourth group is automatically identified by members NOT being in one of 

the first three groups.  This model also contains the covariates X and Z as well as the cross-products of group 

membership and covariates.  By comparing this model with the second model created (one which leaves out the 

cross-products of groups and covariates) we can assess the degree to which the assumptions of homogeneity of 

covariance among the groups is met.  In this particular example, the change in the R2 from the full model to the 

restricted model was quite small and we conclude that the assumption of homogeneity of covariance is reasonable.  

The analysis of variance model for the restricted model indicates that the X covariate is probably contributing 

significantly to the explained variance of the dependent variable Y.   The tests for each source of variance at the end 

of the report confirms that not only are the covariates related to Y but that the group effects are also significant.  The 

comparisons of the group means following adjustment for the covariate effects indicate that group 1 differs from 

groups 2 and 3 and that group 3 appears to differ from group 4.   

 

 



Statistics and Measurement Concepts for LazStats   William G. Miller ©2012 

 

 248 

Chapter 7. Multivariate Statistics 
 

Canonical Correlation 

Introduction 

 

     Canonical correlation analysis involves obtaining an index that describes the degree of relationship between two 

variables, each of which is a weighted composite of other variables.  We have already examined the situation of an 

index between one variable and a weighted composite variable when we studied the multiple correlation coefficient 

of chapter X.  Using a form similar to that used in multiple regression analysis, we might consider: 

 

βy1Y1 + βy2Y2 + .. + βymYm + βy = βx1X1 + .. + βxnXn + βx 

 

as a model for the regression of the composite function Yc on the composite function Xc where 

 

             m                           n 

     Yc = Σ βyiYi   and Xc = Σβ yjXj       (7.1) 

            i=1                       j=1 

 

and the Y and X scores are in standardized form (z scores). 

 

 Using 'least-squares' criteria, we can maximize the simple product-moment correlation between Yc and Xc 

by selecting coefficients (Betas) which minimize the residuals (e).  As in multiple regression, this involves solving 

partial derivatives for the β's on each side of the equation.  The least-squares solution is more complicated than for 

multiple regression and will not be covered in this text.  (See T.W. Anderson, An Introduction to Multivariate 

Analysis, 1958, chapter 12.) 

 

 Unfortunately for the beginning student, the canonical correlation analysis does not yield just one 

correlation index (Rc), but in fact may yield up to m or n (whichever is smaller) independent coefficients.  This is 

because there are additional linear functions of the X's and Y's which may "explain" the residual varian y and 

x not explained by the first set of βx and βy weights.  Each set of these canonical functions explains an additional 

portion of the common variance of the X and Y variables! 

 

 Before introducing the mathematics of obtaining these canonical correlations, the sets of corresponding 

weights and statistical tests of significance, we need to have a basic understanding of the concept of roots and 

vectors of a matrix. 

 

Eigenvalues and Eigenvectors 

 

 A concept which occurs frequently in multivariate statistical analyses is the concept of eigenvalues (roots) 

and associated eigenvectors.  Canonical correlation, factor analysis, multivariate analysis of variance, discriminant 

analysis, etc. utilize the roots and vectors of matrices in their solutions.  To understand this concept, consider a k by 

k matrix (e.g. a correlation matrix)[R]kxk  .  A basic problem in mathematical statistics is to find a k x 1 vector 

(matrix) [E]j  and a scalar (single value) yj  such that 

 

          [R]      [E]   =  y [E]      where at least one element    (7.2) 

               kxk     kx1    j    kx1 

 

 

          of [E]   is not zero. 

                  kx1 

 

This equation may be rewritten as 
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          [R]   [E]   - y [E]    = [0] 

             kxk   kx1   j   kx1      kx1 

 

 

or as     ( [R]    - y [I]    ) [E]    = [0]                 (7.3) 

                  kxk    j   kxk      kx1      kx1 

 

 

If we were to solve this equation for [E] by multiplying both sides of the last equation by the inverse of the matrix in 

the parenthesis (assuming the inverse exists), then [E] would be zero, a solution which violates our desire that at 

least one element of [E] NOT be zero!  Consequently, [E] will have a non-zero element only if the determinant of  

 

          ( [R]    -  y [I]    ) 

                 kxk    j   kxk 

 

is zero.  The equation 

 

          | [R]    -  y [I]   | = 0                         (7.4) 

                kxk    j   kxk 

 

is called the characteristic equation.  The properties of this equation have many applications in science and 

engineering. 

 

     The vector [E]kx1   and the scalar yj  in the equation (5.43) are the eigenvector and eigenvalue of the matrix [R]kxk 

. 

 

 Eigenvalues and eigenvectors are also known as characteristic roots and vectors of a matrix.  To 

demonstrate that the eigenvalue is a root of a characteristic equation, consider the simple case of a 2x2 matrix such 

as 

 

 

 

     | b11  b12 | 

     | b21  b22 | 

 

 

The problem is to find the root yj in solving 

 

          |b11   b12|   | e1 |           |e1  | 

          |           | .  |     |   =  yj  |    | 

          |b21   b22|   | e2 |           |e2  | 

 

 

Using the determinant: 

 

 

          |b11   b12|    |y   0 | 

          |            | - |        |   =  0 

          |b21   b22|    |0   y | 

 

 

or 

 

        | |b11_y   b12| | 

        | |               | |  =  0 

        | |b21   b22_y| | 
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This determinant has the solution 

 

     (b11  - y)(b22  - y) - b12 b21  = 0 

 

or   b11 b22  - yb22  - yb11   + y
2
  - b12 b21  = 0 

 

or   y
2
  - y(b22  + b11 ) + (b11 b22  - b12 b21 ) = 0 

 

This is a quadratic equation with two roots y1  and y2 given by 

 

     .5 {(b22 + b11 ) +/- [(b22 + b11 )
2
  -   4(b11 b22  - b12 b21 ).5 }] 

 

With the roots y1  and y2  evaluated, the elements e1  and e2  of the eigenvector can be solved from 

 

          |b11   b12|   | e1|         | e1| 

          |            |   |    | =   yj|    | 

          |b21   b22|   | e2|         | e2| 

 

which reduces to the equations (for each root): 

 

          b11 e1  + b12 e2  = y e1 

 

          b21 e1  + b22 e2  = y e2 

 

and further reduces to 

 

          (b11 - y)e1  + b12 e2 = 0 

 

          b21e1  + (b22 - y)e2  = 0 

 

Solving these last equations simultaneously for e1 and e2 will yield the elements of the eigenvector [E]. 

 

 There will be an eigenvector for each eigenvalue.  In the case of the 2x2 matrix, the complete solution will 

be 

 

     |b11  b12| | e11  e12|    | y1  0|  | e11  e12| 

     |           | |            | = |        |  |            |         (7.5) 

     |b21  b22| | e21  e22|    | 0  y2|  | e21  e22| 

 

     Every kxk matrix will have as many eigenvalues and eigenvectors as its order.  Not all of the eigenvalues may be 

nonzero.  When a square matrix [R] is symmetric, its eigenvalues are all real and the associated eigenvectors are 

orthogonal (products equal zero).  If some of the eigenvalues are zero, we say that the RANK of the matrix is (k - p) 

where p is the number of roots equal to zero.  The TRACE of a symmetric matrix is the sum of the eigenvalues.  The 

determinant of the matrix is the product of all roots. 

 

 Other relationships obtainable from symmetric matrices are: 

 

     [R]   [E]    = [y]     [E]                                (7.6) 

         kxk   kxk      kxk    kxk 

 

     c[R]     [E]   = c[y]     [E]      where c is a constant. 

           kxk    kxk       kxk    kxk 

 

     It may be pointed out that for any symmetric matrix and its eigenvalues there may be an infinite number  of 

associated eigenvector matrices.  There is, however, at least one matrix of eigenvectors that is orthonormal.  An 

orthonormal matrix is one which when premultiplied by its transpose yields an identity matrix.  If [E] is orthonormal 

then: 
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     [E]'    [E]    =  [I]                                      (7.7) 

         kxk    kxk       kxk 

 

and  [E]'    = [E]
-1

                                          (7.8) 

            kxk       kxk 

 

The Canonical Analysis 

 

 In completing a canonical analysis, the inter-correlation matrix among all of the variables may be 

partitioned into four sub-matrices as shown symbolically below.  The [R11] matrix is the matrix of correlations 

among the "left_hand" variables of the equation presented earlier.  The [R22] matrix is the correlations among the 

"right_hand" variables of our model.  [R12] are the inter-correlations among the left and right hand variables.  [R21] is 

the transpose of [R12]. 

 

 

 

                     |R11 | R12 | 

           [R] =  |      |       |                                      (7.9) 

                     |R21 | R22 | 

 

 

 To start the canonical analysis, a product matrix is first formed by: 

 

          [Rp] = [R22]
-1

 [R21] [R11]
-1

 [R12]                 (7.10) 

 

The equation 

 

          ([Rp] - yj[I])vj = 0                                      (7.11) 

 

          where yj is the jth root and vj is the corresponding eigenvector is solved using the characteristic equation: 

 

          | [Rp] - yj[I] | = 0                                      (7.12) 

 

with the restriction that 

 

          [V]'[R22][V] = [I]                                     (7.13) 

 

 The canonical correlation 1Rc corresponding to the first linear relationship between the left hand variables 

and the right hand variables is equal to the square root of the first root y1.  In general, the jth canonical correlation is 

obtained as: 

 

          jRc = √yj         (7.14) 

 

The canonical correlation may be interpreted as the product-moment correlation between a weighted composite of 

the left-hand variables and a weighted composite of the right-hand variables. 

 

Discriminant Function / MANOVA 

Theory 

 

 Multiple discriminant function analysis is utilized to obtain a set of linear functions which maximally 

discriminate (differentiate) among subjects belonging to several different groups or classifications.  For example, an 

investigator may want to develop equations which differentiate among successful occupational groups based on 

responses to items of a questionnaire.  The functions obtained may be written as: 
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 Fj = Bj,1X1 + ... + Bj,mXm         (7.15) 

where 

 Xi represents an observed variable (i= 1..m), 

 Bj,i is a coefficient for the Xi variable from the 

 jth discriminant function  

 

The coefficients of these discriminant functions are the normalized vectors corresponding to the roots obtained for 

the matrix 

 

   [P] = [W]-1[A]       (7.16) 

where  

   [W]-1 is the inverse of the pooled within groups deviation score cross-products and 

[A] is the among groups cross-products of deviations of group means from the grand mean (weighted by the group 

size). 

 

 Once the discriminant functions are obtained, they may be used to classify subjects on the basis of their 

continuous variables.  The number of functions to be applied to each individual's set of X scores will be one less 

than the number of groups or the number of X variables (whichever is less).  Subjects are then classified into the 

group for which their discriminant score has the highest probability of belonging. 

   

 Discriminant function analysis and Multivariate Analysis of Variance results are essentially identical.  The 

Wilk's Lambda statistic, the Rao F statistic and the Bartlett Chi-Squared statistic will yield the same inference 

regarding significant differences among the groups.  The discriminant functions may be used to obtain a plot of the 

subjects in the discriminant space, that is, the Cartesian (orthogonal) space of the discriminant functions.  By 

examining these plots and the standardized coefficients which contribute the most to each discriminant function, you 

can determine those variables which appear to best differentiate among the groups.  

 

Cluster Analyses 

Theory 

 

 Objects or people may form groups on the basis of similarity of scores on one or more variables.  For 

example, students in a school may form groups relatively homogeneous with regard to interests in music, athletics, 

science, languages, etc.  An investigator may not have "a priori" groups but rather, be interested in identifying 

"natural" groupings based on similar score profiles.  The Cluster  programs of this chapter provide the capability of 

combining subjects which have the most similar profile of scores.   

Hierarchical Cluster Analysis 

 

This procedure was adapted from the Fortran program provided by Donald J. Veldman in his 1967 book.  

To begin, the sum of squared differences for each pair of subjects on K variables is calculated.  If there are n 

subjects, there are n * (n-1) / 2 pairings.  That pair of subjects yielding the smallest sum of squared differences is 

then combined using the average of the pair on each variable, forming a new "subject" or group.  The process is 

repeated with a new combination formed each time.  Eventually, of course, all subjects are combined into a single 

group.  The decision as to when to stop further clustering is typically  based on an "error" estimate which reflects the 

variability of scores for subjects in groups.  As in analysis of variance, the between group variability should be 

significantly greater than the within group variability, if there are to be significant differences among the groups 

formed. 

 

 When you begin execution of the program, you are asked to identify the  variables in your data file that are 

to be used in the grouping.  You are also asked to enter the number of groups at which to begin printing the 

members within each cluster.  This may be any value from the total number of subjects down to 2.  In practice, you 

normally select the value of the "ideal" number of groups you expect or some slightly larger value so you can see the 
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increase in error which occurs as more and more of the groups and subjects are combined into new groups.  You 

may also specify the significance level necessary to end the grouping, for example, the value .05 is frequently used 

in one-way ANOVA analyses when testing for significance.  The value used is in fact referred to the F distribution 

for an F approximation to a multivariate Wilk's Lambda statistic. 

 

Path Analysis 

Theory 

 

 Path analysis is a procedure for examining the inter-correlations among a set of variables to see if they are 

consistent with a model of causation.  A causal model is one in which the observed scores (events) of an object are 

assumed to be directly or indirectly caused by one or more preceding events.  For example, entrance to college may 

be hypothesized to be a result of high achievement in high school.  High achievement in high school may be the 

result of parent expectations and the student's intelligence.  Intelligence may be a result of parent intelligence, early 

nutrition, and early environmental stimulation, etc., etc. .  Causing and resultant variables may be described in a set 

of equations.  Using standardized z scores, the above example might be  described by the following equations: 

 

(1) z1 = e1    Parent intelligence 

(2) z2 = P21z1 + e2   Child's nutrition 

(3) z3 = P31z1 + P32z2 + e3  Child's intelligence 

(4) z4 = P41z1 + e4   Parent expectations 

(5) z5 = P53z3 + p54z4 + e5  School achievement 

(6) z6 = P63z3 + P64z4 + P65z5 + e6     College GPA 

 

 In the above equations, the P's represent path coefficients measuring the strength of causal effect on the 

resultant due to the causing variable z.  In the above example, z1 has no causing variable and path coefficient.  It is 

called an exogenous variable and is assumed to have only external causes unknown in this model.  The "e" values 

represent contributions that are external and unknown for each variable.  These external causes are assumed to be 

uncorrelated and dropped from further computations in this model.  By substituting the definitions of each z score in 

a model like the above, the correlation between the observed variables can be expressed as in the following 

examples: 

 

  r12 = z1z2 / n = P21 z1z1 / n = P21    (7.17) 

  r23 = z2z3 / n = P31P21 + P32     (7.18) 

  etc. 

 

In other words, the correlations are estimated to be the sum of direct path coefficients and products of indirect path 

coefficients. The path coefficients are estimated by the standardized partial regression coefficients (betas) of each 

resultant variable on its causing variables.  For example, coefficients P31 and P32 above would be estimated by ß

31.2 and ß32.1 in the multiple regression equation 

 

   z3 = ß31.2z1 + ß32.1z2 + e3    (7.19) 

 

 If the hypothesized causal flow model sufficiently describes the interrelationships among the observed 

variables, the reproduced correlation matrix using the path coefficients should deviate only by sampling error from 

the original correlations among the variables. 

 

 When you execute the Path Analysis procedure in LazStats, you will be asked to specify the  exogenous 

and endogenous variables in your analysis. The program then asks you to specify, for each resultant (endogenous) 

variable, the causing variables.  In this manner you specify your total path model.  The program then completes the 

number of multiple regression analyses required to estimate the path coefficients, estimate the correlations that 

would be obtained using the model path coefficients and compare the reproduced correlation matrix with the actual 

correlations among the variables. 
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 You may discover in your reading that this is but one causal model method.  More complex methods 

include models involving latent variables (such as those identified through factor analysis), correlated errors, 

adjustments for reliability of the variables, etc.  Structural model equations of these types are often  analyzed using 

the LISREL™ package found in commercial packages such as SPSS™ or SAS™. 

 

Factor Analysis 

 

The Linear Model 

 

 Factor analysis is based on the procedure for obtaining a new set of uncorrelated (orthogonal) variables, 

usually fewer in number than the original set, that reproduces the co-variability observed among a set or original 

variables.  Two models are commonly utilized: 

 

1. The principal components model wherein the observed score of an individual i on the jth variable Xi,j is 

given as: 

 

  Xi,j = Aj,1Si,1 + Aj,2Si,2 + ....+ Aj,kSi,k + C   (7.20) 

 

  where Aj,k is a loading of the kth factor on variable j,  

  Si,k is the factor score of the ith individual on the kth factor and 

  C is a constant. 

   

 The Aj,k loadings are typically least-squares regression coefficients. 

 

2. The common factor model assumes each variable X may contain some unique component of variability among 

subjects as well as components in common with other variables.  The model is: 

 

  Xi,j = Aj,1Si,1 + .... + Aj,kSi,k + Aj,uSi,u    (7.21) 

 

 The above equation may also be expressed in terms of standard z scores as: 

 

  zi,j = aj,1Si,1 + .... + aj,kSi,k + aj,uSi,u    (7.22) 

 

 Since the average of standard score products for the n cases is the product-moment correlation coefficient, 

the correlation matrix among the j observed variables may be expressed in matrix form as: 

 

  [R] = [F]  [F]' - [U]2      (7.23) 

      jxj     jxk   kxj    jxj     (array sizes k <= j) 

 

 The matrix [F] is the matrix of factor loadings or correlations of the k theoretical orthogonal variables with 

the j observed variables.  The [U] matrix is a diagonal matrix with unique loadings on the diagonal. 

 

 The factor loadings above are the result of calculating the eigenvalues and associated vectors of the 

characteristic equation: 

 

  | [R] - [U]2 -  [I] |       (7.24) 

  

where the lambda values are eigenvalues (roots) of the equation. 

 

 When you execute the Factor Analysis Program in LazStats,  you are asked to provide information 

necessary to complete an analysis of your data file.  You enter the name of your file and  identify the variables to 

analyze.  If you elect to send output to the printer, be sure the printer is on when you start.  You will also be asked to 
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specify the type of analysis to perform.  The principle components method, a partial image analysis, a Guttman 

Image Analysis, a Harris Scaled Image Analysis, a Canonical Factor Analysis or an Alpha Factor Analysis may be 

elected. Selection of the method depends on the assumptions you make concerning sampling of variables and 

sampling of subjects as well as the theory on which you view your variables.   You may request a rotation of the 

resulting factors which follows completion of the analysis of the data,.  The most common rotation performed is the 

Varimax rotation.  This method rotates the orthogonal factor loadings so that the loadings within each factor are 

most variable on the average.  This tends to produce "simple structure", that is, factors which have very high or very 

low loadings for the original variables and thus simplifies the interpretation of the resulting factors.  One may also 

elect to perform a Procrustean rotation whereby the obtained factor loadings are rotated to be maximally congruent 

with another factor loading matrix.  This second set of loadings which is entered by the user is typically a set which 

represents some theoretical structure of the original variables.  One might, however, obtain factor  loadings for 

males and females separately and then rotate one solution against the other to see if the structures are highly similar 

for both sexes. 

 

An Example:  We will use the cansas.laz file and analyze the relationship between the three predictor variables 

weight, waist and pulse with the dependent variables chins, situps and jumps. 

 

 

Fig. 7.1 The Cannonical Correlation Dialog 

The results obtained are: 

 

CANONICAL CORRELATION ANALYSIS 

 

Left Correlation Matrix with   20 cases. 

 

Variables 

                 weight        waist        pulse 

    weight       1.000        0.870       -0.366  

     waist       0.870        1.000       -0.353  

     pulse      -0.366       -0.353        1.000  

 

Right Correlation Matrix with   20 cases. 

 

Variables 

                  chins       situps        jumps 

     chins       1.000        0.696        0.496  

    situps       0.696        1.000        0.669  

     jumps       0.496        0.669        1.000  

 

Left-Right Correlation Matrix with   20 cases. 

 

Variables 

                  chins       situps        jumps 

    weight      -0.390       -0.493       -0.226  
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     waist      -0.552       -0.646       -0.191  

     pulse       0.151        0.225        0.035  

 

Right Inverse x Right-Left Matrix with   20 cases. 

 

Variables 

                 weight        waist        pulse 

     chins      -0.102       -0.226        0.001  

    situps      -0.552       -0.788        0.365  

     jumps       0.193        0.448       -0.210  

 

Left Inverse x Left-Right Matrix with   20 cases. 

 

Variables 

                  chins       situps        jumps 

    weight       0.368        0.287       -0.259  

     waist      -0.882       -0.890        0.015  

     pulse      -0.026        0.016       -0.055  

 

Canonical Function with   20 cases. 

 

Variables 

                 Var. 1       Var. 2       Var. 3 

    Var. 1       0.162        0.172        0.023  

    Var. 2       0.482        0.549        0.111  

    Var. 3      -0.318       -0.346       -0.032  

 

Trace of the matrix:=    0.6785 

Percent of trace extracted:   100.0000 

 

   Canonical R   Root  % Trace   Chi-Sqr    D.F.    Prob. 

 1   0.795608    0.633  93.295   16.255       9    0.062 

 2   0.200556    0.040   5.928    0.718       4    0.949 

 3   0.072570    0.005   0.776    0.082       1    0.775 

 

Overall Tests of Significance: 

         Statistic      Approx. Stat.   Value   D.F.  Prob.>Value 

Wilk's Lambda           Chi-Squared    17.3037    9   0.0442 

Hotelling-Lawley Trace  F-Test          2.4938  9 38  0.0238 

Pillai Trace            F-Test          1.5587  9 48  0.1551 

Roys Largest Root       F-Test         10.9233  3 19  0.0002 

 

Eigenvectors with   20 cases. 

 

Variables 

                 Var. 1       Var. 2       Var. 3 

    Var. 1       0.210       -0.066        0.051  

    Var. 2       0.635        0.022       -0.049  

    Var. 3      -0.431        0.188        0.017  

 

Standardized Right Side Weights with   20 cases. 

 

Variables 

                 Var. 1       Var. 2       Var. 3 

    weight       0.775       -1.884        0.191  

     waist      -1.579        1.181       -0.506  

     pulse       0.059       -0.231       -1.051  

 

Standardized Left Side Weights with   20 cases. 
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Variables 

                 Var. 1       Var. 2       Var. 3 

     chins       0.349       -0.376        1.297  

    situps       1.054        0.123       -1.237  

     jumps      -0.716        1.062        0.419  

 

Raw Right Side Weights with   20 cases. 

 

Variables 

                 Var. 1       Var. 2       Var. 3 

    weight       0.031       -0.076        0.008  

     waist      -0.493        0.369       -0.158  

     pulse       0.008       -0.032       -0.146  

 

Raw Left Side Weights with   20 cases. 

 

Variables 

                 Var. 1       Var. 2       Var. 3 

     chins       0.066       -0.071        0.245  

    situps       0.017        0.002       -0.020  

     jumps      -0.014        0.021        0.008  

 

Right Side Correlations with Function with   20 cases. 

 

Variables 

                 Var. 1       Var. 2       Var. 3 

    weight      -0.621       -0.772        0.135  

     waist      -0.925       -0.378        0.031  

     pulse       0.333        0.041       -0.942  

 

Left Side Correlations with Function with   20 cases. 

 

Variables 

                 Var. 1       Var. 2       Var. 3 

     chins       0.728        0.237        0.644  

    situps       0.818        0.573       -0.054  

     jumps       0.162        0.959        0.234  

 

Redundancy Analysis for Right Side Variables 

 

            Variance Prop.    Redundancy 

         1    0.45080        0.28535 

         2    0.24698        0.00993 

         3    0.30222        0.00159 

 

Redundancy Analysis for Left Side Variables 

            Variance Prop.    Redundancy 

         1    0.40814        0.25835 

         2    0.43449        0.01748 

         3    0.15737        0.00083 

 

Interpreting The Standardized Canonical Coefficients. 

 

 The elements of [V] represent the standardized weights obtained from the characteristic equation.  These elements 

are the coefficients with which to weight each of the standard (z) scores in our equation (1) above.   
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Typically, these weights are presented in two parts: 

     a.   The coefficients corresponding to each root are presented as column vectors for the left-hand weights and 

     b.   the coefficients corresponding to each root are presented as column vectors for the right-hand weights. 

 

Structure Coefficents. 

 

 In addition to the standardized canonical coefficients, it is useful to obtain what are called structure coefficients.  

Structure coefficients are the correlations of the left-hand variables with the left-hand composite score (function) and 

the correlations of the right-hand variables with the right-hand function.   

 

 We may also be interested in obtaining and interpreting the correlations of the left-hand function with individual 

variables of the right-hand and also the correlation of the individual left-hand variables with the right-hand function 

(for each linear equation).  

Discriminant Function / MANOVA 

 

An Example 

 

 We will use the file labeled ManoDiscrim.LAZ for our example.  A file of the same name (or a .tab file) should be 

in your directory.  Load the file and then click on the Statistics / Multivariate / Discriminant Function option.  You 

should see the form below completed for a discriminant function analysis: 

 

 

Fig. 7.2   Discriminant Function Analysis Form 

 

 You will notice we have asked for all options and have specified that classification use the a priori (sample) sizes for 

classification.  When you click the Compute button, the following results are obtained: 

 
MULTIVARIATE ANOVA / DISCRIMINANT FUNCTION 

Reference: Multiple Regression in Behavioral Research 

Elazar J. Pedhazur, 1997, Chapters 20-21 

Harcourt Brace College Publishers 

 

Total Cases := 15, Number of Groups := 3 

 

 

SUM OF CROSS-PRODUCTS for Group 1, N = 5 with    5 cases. 

 

 

Variables 

                    Y1           Y2  
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       Y1      111.000      194.000  

       Y2      194.000      343.000  

 

 

 

 

WITHIN GROUP SUM OF DEVIATION CROSS-PRODUCTS Group 1, N := 5 with    5 cases. 

 

 

Variables 

                    Y1           Y2  

       Y1        5.200        5.400  

       Y2        5.400        6.800  

 

 

 

 

MEANS FOR GROUP 1, N := 5 with    5 valid cases. 

 

Variables          Y1           Y2  

                 4.600        8.200  

 

 

VARIANCES FOR GROUP 1 with    5 valid cases. 

 

Variables          Y1           Y2  

                 1.300        1.700  

 

 

STANDARD DEVIATIONS FOR GROUP 1 with    5 valid cases. 

 

Variables          Y1           Y2  

                 1.140        1.304 

SUM OF CROSS-PRODUCTS for Group 2, N = 5 with    5 cases. 

 

 

Variables 

                    Y1           Y2  

       Y1      129.000      169.000  

       Y2      169.000      223.000  

 

 

 

 

WITHIN GROUP SUM OF DEVIATION CROSS-PRODUCTS Group 2, N := 5 with    5 cases. 

 

 

Variables 

                    Y1           Y2  

       Y1        4.000        4.000  

       Y2        4.000        5.200  

 

 

 

 

MEANS FOR GROUP 2, N := 5 with    5 valid cases. 

 

Variables          Y1           Y2  

                 5.000        6.600  

 

 

VARIANCES FOR GROUP 2 with    5 valid cases. 

 

Variables          Y1           Y2  

                 1.000        1.300  

 

 

STANDARD DEVIATIONS FOR GROUP 2 with    5 valid cases. 

 

Variables          Y1           Y2  

1.0 1.140 

 

SUM OF CROSS-PRODUCTS for Group 3, N = 5 with    5 cases. 
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Variables 

                    Y1           Y2  

       Y1      195.000      196.000  

       Y2      196.000      199.000  

 

 

 

 

WITHIN GROUP SUM OF DEVIATION CROSS-PRODUCTS Group 3, N := 5 with    5 cases. 

 

 

Variables 

                    Y1           Y2  

       Y1        2.800        3.800  

       Y2        3.800        6.800  

 

 

 

 

MEANS FOR GROUP 3, N := 5 with    5 valid cases. 

 

Variables          Y1           Y2  

                 6.200        6.200  

 

 

VARIANCES FOR GROUP 3 with    5 valid cases. 

 

Variables          Y1           Y2  

                 0.700        1.700  

 

 

STANDARD DEVIATIONS FOR GROUP 3 with    5 valid cases. 

 

Variables          Y1           Y2  

                 0.837        1.304 

 

TOTAL SUM OF CROSS-PRODUCTS with   15 cases. 

 

 

Variables 

                    Y1           Y2  

       Y1      435.000      559.000  

       Y2      559.000      765.000 

TOTAL SUM OF DEVIATION CROSS-PRODUCTS with   15 cases. 

 

 

Variables 

                    Y1           Y2  

       Y1       18.933        6.000  

       Y2        6.000       30.000  

 

MEANS with   15 valid cases. 

 

Variables          Y1           Y2  

                 5.267        7.000  

 

 

VARIANCES with   15 valid cases. 

 

Variables          Y1           Y2  

                 1.352        2.143  

 

 

STANDARD DEVIATIONS with   15 valid cases. 

 

Variables          Y1           Y2  

                 1.163        1.464  

 

BETWEEN GROUPS SUM OF DEV. CPs with   15 cases. 

 

 

Variables 

                    Y1           Y2  
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       Y1        6.933       -7.200  

       Y2       -7.200       11.200  

UNIVARIATE ANOVA FOR VARIABLE Y1  

SOURCE    DF       SS        MS        F         PROB > F 

BETWEEN     2     6.933     3.467     3.467     0.065 

ERROR      12    12.000     1.000 

TOTAL      14    18.933 

 

UNIVARIATE ANOVA FOR VARIABLE Y2  

SOURCE    DF       SS        MS        F         PROB > F 

BETWEEN     2    11.200     5.600     3.574     0.061 

ERROR      12    18.800     1.567 

TOTAL      14    30.000 

Inv. of Pooled Within Dev. CPs Matrix with   15 cases. 

 

 

Variables 

                    Y1           Y2  

       Y1        0.366       -0.257  

       Y2       -0.257        0.234  

Number of roots extracted := 2 

Percent of trace extracted :=   100.0000 

Roots of the W inverse time B Matrix 

 

No.       Root   Proportion   Canonical R    Chi-Squared  D.F.    Prob. 

 1      8.7985   0.9935        0.9476           25.7156     4     0.000 

 2      0.0571   0.0065        0.2325            0.6111     1     0.434 

 

Eigenvectors of the W inverse x B Matrix with   15 cases. 

 

 

Variables 

                      1            2 

       Y1       -2.316        0.188  

       Y2        1.853        0.148  

 

Pooled Within-Groups Covariance Matrix with   15 cases. 

 

 

Variables 

                    Y1           Y2  

       Y1        1.000        1.100  

       Y2        1.100        1.567  

 

 

Total Covariance Matrix with   15 cases. 

 

 

Variables 

                    Y1           Y2  

       Y1        1.352        0.429  

       Y2        0.429        2.143  
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Fig. 7.3   Plot of Cases in a Discriminant Space 

Raw Function Coeff.s from Pooled Cov. with   15 cases. 

 

 

Variables 

                      1            2 

       Y1       -2.030        0.520  

       Y2        1.624        0.409  

 

 

 

 

Raw Discriminant Function Constants with   15 valid cases. 

 

Variables            1            2 

                -0.674       -5.601  

Fisher Discriminant Functions 

Group   1 Constant := -24.402 

Variable  Coefficient 

     1    -5.084 

     2     8.804 

 

Group   2 Constant := -14.196 

Variable  Coefficient 

     1     1.607 

     2     3.084 

 

Group   3 Constant := -19.759 

Variable  Coefficient 

     1     8.112 

     2    -1.738 

CLASSIFICATION OF CASES 

SUBJECT ACTUAL HIGH  PROBABILITY   SEC.D HIGH   DISCRIM 

ID NO.  GROUP  IN    GROUP P(G/D)  GROUP P(G/D) SCORE 

  1      1      1      0.9999        2   0.0001  4.6019 

                                                -1.1792 

  2      1      1      0.9554        2   0.0446  2.5716 

                                                -0.6590 

  3      1      1      0.8903        2   0.1097  2.1652 

                                                 0.2699 

  4      1      1      0.9996        2   0.0004  3.7890 

                                                 0.6786 

  5      1      1      0.9989        2   0.0011  3.3826 

                                                 1.6075 

  6      2      2      0.9746        3   0.0252 -0.6760 

                                                -1.4763 

  7      2      2      0.9341        1   0.0657  0.9478 

                                                -1.0676 

  8      2      2      0.9730        1   0.0259  0.5414 

                                                -0.1387 

  9      2      2      0.5724        3   0.4276 -1.4888 

                                                 0.3815 

 10      2      2      0.9842        1   0.0099  0.1350 
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                                                 0.7902 

 11      3      3      0.9452        2   0.0548 -2.7062 

                                                -0.9560 

 12      3      3      0.9999        2   0.0001 -4.7365 

                                                -0.4358 

 13      3      3      0.9893        2   0.0107 -3.1126 

                                                -0.0271 

 14      3      3      0.9980        2   0.0020 -3.5191 

                                                 0.9018 

 15      3      3      0.8007        2   0.1993 -1.8953 

                                                 1.3104 

 

CLASSIFICATION TABLE 

 

 

                        PREDICTED GROUP 

Variables 

                     1            2            3        TOTAL 

         1           5            0            0            5  

         2           0            5            0            5  

         3           0            0            5            5  

     TOTAL           5            5            5           15  

Standardized Coeff. from Pooled Cov. with   15 cases. 

 

 

Variables 

                      1            2 

       Y1       -2.030        0.520  

       Y2        2.032        0.511  

 

Centroids with   15 cases. 

 

 

Variables 

                      1            2 

         1       3.302        0.144  

         2      -0.108       -0.302  

         3      -3.194        0.159  

Raw Coefficients from Total Cov. with   15 cases. 

 

 

Variables 

                      1            2 

       Y1       -0.701        0.547  

       Y2        0.560        0.429  

 

 

 

 

Raw Discriminant Function Constants with   15 valid cases. 

 

Variables            1            2 

                -0.674       -5.601  

 

 

Standardized Coeff.s from Total Cov. with   15 cases. 

 

 

Variables 

                      1            2 

       Y1       -0.815        0.636  

       Y2        0.820        0.628  

Total Correlation Matrix with   15 cases. 

 

 

Variables 

                    Y1           Y2  

       Y1        1.000        0.252  

       Y2        0.252        1.000  

 

 

 

 

Corr.s Between Variables and Functions with   15 cases. 
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Variables 

                      1            2 

       Y1       -0.608        0.794  

       Y2        0.615        0.788  

 

 

 

Wilk's Lambda =     0.0965. 

F =    12.2013 with D.F.     4 and    22 .  Prob > F = 0.0000 

Bartlett Chi-Squared =    26.8845 with 4 D.F. and prob. = 0.0000 

Pillai Trace =     0.9520 

 

 
 

 You will notice that we have obtained cross-products and deviation cross-products for each group as well as the 

combined between and within groups as well as descriptive statistics (means, variances, standard deviations.)  Two 

roots were obtained, the first significant at the 0.05 level using a chi-square test.  The one-way analyses of variances 

completed for each continuous variable were not significant at the 0.05 level which demonstrates that a multivariate 

analysis may identify group differences not caught by individual variable analysis.  The discriminant functions can 

be used to plot the group subjects in the (orthogonal) space of the functions.  If you examine the plot you can see 

that the individuals in the three groups analyzed are easily separated using just the first discriminant function (the 

horizontal axis.)  Raw and standardized coefficients for the discriminant functions are presented as well as Fisher’s 

discriminant functions for each group.  The latter are used to classify the subjects and the classifications are shown 

along with a table which summarizes the classifications.  Note that in this example, all cases are correctly classified.  

Certainly, a cross-validation of the functions for classification would likely encounter some errors of classification.  

Since we asked that the discriminant scores be placed in the data grid, the last Fig. shows the data grid with the 

Fisher discriminant scores saved as two new variables. 

 

Cluster Analyses 

 

 To demonstrate the Hierarchical Clustering  program, the data to be analyzed is the one labeled cansas.LAZ.  You 

will see the form below with specifications for the grouping: 

 

 

Fig. 7.4   Specifications fo the Hierarchical Cluster Analysis 

 

  Results for the hierarchical analysis that you would obtain after clicking the Compute button are presented below: 

 
Hierarchical Cluster Analysis 

 

Number of objects to cluster := 20 on 6 variables. 
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Variable Means with   20 valid cases. 

 

Variables       weight        waist        pulse        chins       situps 

               178.600       35.400       56.100        9.450      145.550  

 

Variables        jumps 

                70.300  

 

 

Variable Variances with   20 valid cases. 

 

Variables       weight        waist        pulse        chins       situps 

               609.621       10.253       51.989       27.945     3914.576  

 

Variables        jumps 

              2629.379  

 

 

Variable Standard Deviations with   20 valid cases. 

 

Variables       weight        waist        pulse        chins       situps 

                24.691        3.202        7.210        5.286       62.567  

 

Variables        jumps 

                51.277 

 

19 groups after combining group 2 (n := 1 ) and group 6 (n := 1) error :=   0.386 

 

18 groups after combining group 18 (n := 1 ) and group 19 (n := 1) error :=   0.387 

 

17 groups after combining group 12 (n := 1 ) and group 18 (n := 2) error :=   0.556 

 

16 groups after combining group 2 (n := 2 ) and group 17 (n := 1) error :=   0.663 

 

15 groups after combining group 4 (n := 1 ) and group 8 (n := 1) error :=   0.805 

 

14 groups after combining group 5 (n := 1 ) and group 11 (n := 1) error :=   1.050 

 

13 groups after combining group 3 (n := 1 ) and group 7 (n := 1) error :=   1.345 

 

12 groups after combining group 2 (n := 3 ) and group 15 (n := 1) error :=   1.402 

 

11 groups after combining group 1 (n := 1 ) and group 2 (n := 4) error :=   1.489 

 

10 groups after combining group 12 (n := 3 ) and group 13 (n := 1) error :=   2.128 

Group 1 (n := 5) 

  Object := 0 

  Object := 1 

  Object := 5 

  Object := 14 

  Object := 16 

Group 3 (n := 2) 

  Object := 2 

  Object := 6 

Group 4 (n := 2) 

  Object := 3 

  Object := 7 

Group 5 (n := 2) 

  Object := 4 

  Object := 10 

Group 9 (n := 1) 

  Object := 8 

Group 10 (n := 1) 

  Object := 9 

Group 12 (n := 4) 

  Object := 11 

  Object := 12 

  Object := 17 

  Object := 18 

Group 14 (n := 1) 

  Object := 13 

Group 16 (n := 1) 

  Object := 15 

Group 20 (n := 1) 
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  Object := 19 

 

9 groups after combining group 4 (n := 2 ) and group 20 (n := 1) error :=   2.721 

Group 1 (n := 5) 

  Object := 0 

  Object := 1 

  Object := 5 

  Object := 14 

  Object := 16 

Group 3 (n := 2) 

  Object := 2 

  Object := 6 

Group 4 (n := 3) 

  Object := 3 

  Object := 7 

  Object := 19 

Group 5 (n := 2) 

  Object := 4 

  Object := 10 

Group 9 (n := 1) 

  Object := 8 

Group 10 (n := 1) 

  Object := 9 

Group 12 (n := 4) 

  Object := 11 

  Object := 12 

  Object := 17 

  Object := 18 

Group 14 (n := 1) 

  Object := 13 

Group 16 (n := 1) 

  Object := 15 

 

8 groups after combining group 3 (n := 2 ) and group 16 (n := 1) error :=   3.151 

Group 1 (n := 5) 

  Object := 0 

  Object := 1 

  Object := 5 

  Object := 14 

  Object := 16 

Group 3 (n := 3) 

  Object := 2 

  Object := 6 

  Object := 15 

Group 4 (n := 3) 

  Object := 3 

  Object := 7 

  Object := 19 

Group 5 (n := 2) 

  Object := 4 

  Object := 10 

Group 9 (n := 1) 

  Object := 8 

Group 10 (n := 1) 

  Object := 9 

Group 12 (n := 4) 

  Object := 11 

  Object := 12 

  Object := 17 

  Object := 18 

Group 14 (n := 1) 

  Object := 13 

 

7 groups after combining group 4 (n := 3 ) and group 9 (n := 1) error :=   6.111 

Group 1 (n := 5) 

  Object := 0 

  Object := 1 

  Object := 5 

  Object := 14 

  Object := 16 

Group 3 (n := 3) 

  Object := 2 

  Object := 6 

  Object := 15 
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Group 4 (n := 4) 

  Object := 3 

  Object := 7 

  Object := 8 

  Object := 19 

Group 5 (n := 2) 

  Object := 4 

  Object := 10 

Group 10 (n := 1) 

  Object := 9 

Group 12 (n := 4) 

  Object := 11 

  Object := 12 

  Object := 17 

  Object := 18 

Group 14 (n := 1) 

  Object := 13 

 

6 groups after combining group 5 (n := 2 ) and group 12 (n := 4) error :=   6.180 

Group 1 (n := 5) 

  Object := 0 

  Object := 1 

  Object := 5 

  Object := 14 

  Object := 16 

Group 3 (n := 3) 

  Object := 2 

  Object := 6 

  Object := 15 

Group 4 (n := 4) 

  Object := 3 

  Object := 7 

  Object := 8 

  Object := 19 

Group 5 (n := 6) 

  Object := 4 

  Object := 10 

  Object := 11 

  Object := 12 

  Object := 17 

  Object := 18 

Group 10 (n := 1) 

  Object := 9 

Group 14 (n := 1) 

  Object := 13 

 

5 groups after combining group 1 (n := 5 ) and group 3 (n := 3) error :=   7.617 

Group 1 (n := 8) 

  Object := 0 

  Object := 1 

  Object := 2 

  Object := 5 

  Object := 6 

  Object := 14 

  Object := 15 

  Object := 16 

Group 4 (n := 4) 

  Object := 3 

  Object := 7 

  Object := 8 

  Object := 19 

Group 5 (n := 6) 

  Object := 4 

  Object := 10 

  Object := 11 

  Object := 12 

  Object := 17 

  Object := 18 

Group 10 (n := 1) 

  Object := 9 

Group 14 (n := 1) 

  Object := 13 

 

4 groups after combining group 5 (n := 6 ) and group 10 (n := 1) error :=  11.027 
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Group 1 (n := 8) 

  Object := 0 

  Object := 1 

  Object := 2 

  Object := 5 

  Object := 6 

  Object := 14 

  Object := 15 

  Object := 16 

Group 4 (n := 4) 

  Object := 3 

  Object := 7 

  Object := 8 

  Object := 19 

Group 5 (n := 7) 

  Object := 4 

  Object := 9 

  Object := 10 

  Object := 11 

  Object := 12 

  Object := 17 

  Object := 18 

Group 14 (n := 1) 

  Object := 13 

 

3 groups after combining group 1 (n := 8 ) and group 14 (n := 1) error :=  13.897 

Group 1 (n := 9) 

  Object := 0 

  Object := 1 

  Object := 2 

  Object := 5 

  Object := 6 

  Object := 13 

  Object := 14 

  Object := 15 

  Object := 16 

Group 4 (n := 4) 

  Object := 3 

  Object := 7 

  Object := 8 

  Object := 19 

Group 5 (n := 7) 

  Object := 4 

  Object := 9 

  Object := 10 

  Object := 11 

  Object := 12 

  Object := 17 

  Object := 18 

 

2 groups after combining group 4 (n := 4 ) and group 5 (n := 7) error :=  17.198 

Group 1 (n := 9) 

  Object := 0 

  Object := 1 

  Object := 2 

  Object := 5 

  Object := 6 

  Object := 13 

  Object := 14 

  Object := 15 

  Object := 16 

Group 4 (n := 11) 

  Object := 3 

  Object := 4 

  Object := 7 

  Object := 8 

  Object := 9 

  Object := 10 

  Object := 11 

  Object := 12 

  Object := 17 

  Object := 18 

  Object := 19 
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Fig. 7.5   Grouping Errors in Hierarchical Clustering 

If you compare the results above with a discriminant analysis on the same data, you will see that the clustering 

procedure does not necessarily replicate the original groups.  Clearly, “nearest neighbor” grouping in Euclidean 

space does not necessarily result in the same a priori groups from the discriminant analysis.   

 

 By examining the increase in error (variance of subjects within the groups) as a function of the number of groups, 

one can often make some decision about the number of groups they wish to interpret.  There is a large increase in 

error when going from 8 groups down to 7 in this analysis which suggests there are possibly 7 or 8 groups which 

might be examined.  If we had more information on the objects of those groups, we might see a pattern or 

commonality shared by objects of those groups. 

K-Means Clustering Analysis 

 With this procedure, one first specifies the number of groups to be formed among the objects.  The procedure uses a 

procedure to load each of the k groups with one object in a somewhat random manner.  The procedure then 

iteratively adds or subtracts objects from each group based on an error measure of the distance between the objects 

in the group.  The procedure ends when subsequent iterations do not produce a lower value or the number of 

iterations has been exceeded. 

 In this example, we loaded the cansas.LAZ file to group the 20 subjects into four groups.  The results may be 

compared with the other cluster methods of this chapter. 

 

 

Fig. 7.6   The K-Means Clustering Form 
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Results are: 

 
K-Means Clustering.  Adapted from AS 136  APPL. STATIST. (1979) VOL.28, NO.1 

 

File := C:\lazarus\Projects\LazStats\LazStatsData\cansas.LAZ 

No. Cases := 20, No. Variables := 6, No. Clusters := 4 

 

Mean :=  178.600, Std.Dev. :=  609.621 for weight 

Mean :=   35.400, Std.Dev. :=   10.253 for waist 

Mean :=   56.100, Std.Dev. :=   51.989 for pulse 

Mean :=    9.450, Std.Dev. :=   27.945 for chins 

Mean :=  145.550, Std.Dev. := 3914.576 for situps 

Mean :=   70.300, Std.Dev. := 2629.379 for jumps 

 

NUMBER OF SUBJECTS IN EACH CLUSTER 

Cluster := 1 with 1 cases. 

Cluster := 2 with 7 cases. 

Cluster := 3 with 9 cases. 

Cluster := 4 with 3 cases. 

 

PLACEMENT OF SUBJECTS IN CLUSTERS 

CLUSTER SUBJECT 

     1     14 

     2      2 

     2      6 

     2      8 

     2      1 

     2     15 

     2     17 

     2     20 

     3     11 

     3     12 

     3     13 

     3      4 

     3      5 

     3      9 

     3     18 

     3     19 

     3     10 

     4      7 

     4     16 

     4      3 

 

AVERAGE VARIABLE VALUES BY CLUSTER 

               VARIABLES 

CLUSTER    1     2     3     4     5     6  

        

     1  0.11  1.03 -0.12 -0.30 -0.02 -0.01  

     2 -0.00  0.02 -0.02 -0.19 -0.01 -0.01  

     3 -0.02 -0.20  0.01  0.17  0.01  0.01  

     4  0.04  0.22  0.05  0.04 -0.00  0.01  

 

WITHIN CLUSTER SUMS OF SQUARES 

Cluster 1 :=  0.000 

Cluster 2 :=  0.274 

Cluster 3 :=  0.406 

Cluster 4 :=  0.028 

 

Average Linkage Hierarchical Cluster Analysis 

 This cluster procedure clusters objects based on their similarity (or dissimilarity) as recorded in a data matrix.  The 

correlation among objects is often used as a measure of similarity.  In this example, we first loaded the file labeled 

"cansas.laz".  We then "rotated" the data using the rotate function in the Edit menu so that columns represent 

subjects and rows represent variables.  We then used the Correlation procedure (with the option to save the 

correlation matrix) to obtain the correlation among the 20 subjects as a measure of similarity.  We then closed the 

file.  Next, we opened the matrix file we had just saved using the File / Open a Matrix File option.  We then clicked 

on the Analyses / Multivariate / Cluster / Average Linkage option.  Shown below is the dialogue box for the 

analysis: 
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Fig. 7.7   Average Linkage Dialog 

 

Output of the analysis includes a listing of which objects (groups) are combined at each step followed by a 

dendogram of the combinations.  You can compare this method of clustering subjects with that obtained in the 

previous analysis. 

 
Average Linkage Cluster Analysis.  Adopted from ClusBas by John S. Uebersax 

 

Group   1 is joined by group   3. N is   2 ITER :=   1 SIM :=    193.000 

Group   1 is joined by group   5. N is   3 ITER :=   2 SIM :=    131.500 

Group   1 is joined by group   6. N is   4 ITER :=   3 SIM :=     73.000 

Group   1 is joined by group   2. N is   5 ITER :=   4 SIM :=     36.250 

Group   1 is joined by group   4. N is   6 ITER :=   5 SIM :=      7.200 

 

No. of objects :=   6 

Matrix defined similarities among objects. 

Average Linkage Cluster Analysis.  Adopted from ClusBas by John S. Uebersax 

 

Group   1 is joined by group   3. N is   2 ITER :=   1 SIM :=    193.000 

Group   1 is joined by group   5. N is   3 ITER :=   2 SIM :=    131.500 

Group   1 is joined by group   6. N is   4 ITER :=   3 SIM :=     73.000 

Group   1 is joined by group   2. N is   5 ITER :=   4 SIM :=     36.250 

Group   1 is joined by group   4. N is   6 ITER :=   5 SIM :=      7.200 

 

No. of objects :=   6 

Matrix defined similarities among objects. 

 

 

UNIT     1    3    5    6    2    4 

STEP     *    *    *    *    *    * 

    1    ******    *    *    *    *  

           *       *    *    *    *  

    2      *********    *    *    *  

               *        *    *    *  

    3          **********    *    *  

                   *         *    *  

    4              ***********    *  

                        *         *  

    5                   ***********  

                             *       

 

         

Single Link Clustering 

 

This procedure reads a file of subjects or objects measured on one or more variables.  One variable is selected to 

"link" subjects together into groups.  Originally, each subject is a group.  Subjects closest together on the measure 

are combined to form a new group with a score that is the average of the two subjects within the group.  This 

process is repeated until only 1 group remains.  You can elect to show each grouping step and the errors of grouping 

as well as a dendogram of the groupings.   

 

Shown below is a single link cluster of subject “jumps” as found in the cansas.laz file: 
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Fig. 7.8   Single Link Clustering Form 

 
Single Linkage Clustering by Bill Miller 

FILE: C:\Documents and Settings\Owner\My Documents\Projects\CLanguage\data\cansas.LAZ 

Variable = jumps 

Number of cases = 20 

Mean =   70.300, Variance = 2629.379, Std.Dev. =   51.277 

 

GROUP ID  17  15   4   7  11   9   8   6  20  14   5   2   1  19  18   3  13  12  16  10 

        (Group 2 is combined with Group 1) 

 

GROUP ID  17  15   4   7  11   9   8   6  20  14   5   2  19  18   3  13  12  16  10 

        (Group 9 is combined with Group 8) 

 

GROUP ID  17  15   4   7  11   9   6  20  14   5   2  19  18   3  13  12  16  10 

        (Group 7 is combined with Group 11) 

 

GROUP ID  17  15   4   7   9   6  20  14   5   2  19  18   3  13  12  16  10 

        (Group 9 is combined with Group 3) 

 

GROUP ID  17  15   4   7   9   6  20  14   5   2  19  18  13  12  16  10 

        (Group 2 is combined with Group 18) 

 

GROUP ID  17  15   4   7   9   6  20  14   5   2  19  13  12  16  10 

        (Group 6 is combined with Group 20) 

 

GROUP ID  17  15   4   7   9   6  14   5   2  19  13  12  16  10 

        (Group 7 is combined with Group 9) 

 

GROUP ID  17  15   4   7   6  14   5   2  19  13  12  16  10 

        (Group 7 is combined with Group 13) 

 

GROUP ID  17  15   4   7   6  14   5   2  19  12  16  10 

        (Group 12 is combined with Group 16) 

 

GROUP ID  17  15   4   7   6  14   5   2  19  12  10 

        (Group 7 is combined with Group 6) 

 

GROUP ID  17  15   4   7  14   5   2  19  12  10 

        (Group 15 is combined with Group 4) 

 

GROUP ID  17  15   7  14   5   2  19  12  10 

        (Group 15 is combined with Group 7) 

 

GROUP ID  17  15  14   5   2  19  12  10 

        (Group 2 is combined with Group 19) 

 

GROUP ID  17  15  14   5   2  12  10 

        (Group 14 is combined with Group 5) 
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GROUP ID  17  15  14   2  12  10 

        (Group 14 is combined with Group 2) 

 

GROUP ID  17  15  14  12  10 

        (Group 15 is combined with Group 12) 

 

GROUP ID  17  15  14  10 

        (Group 15 is combined with Group 14) 

 

GROUP ID  17  15  10 

        (Group 17 is combined with Group 15) 

 

GROUP ID  17  10 

        (Group 17 is combined with Group 10) 

 

GROUP ID  17 

 

GROUPING STEP    ERROR 

       1               0.000 

       2               0.000 

       3               0.000 

       4               0.008 

       5               0.012 

       6               0.020 

       7               0.035 

       8               0.064 

       9               0.098 

      10               0.102 

      11               0.117 

      12               0.115 

      13               0.142 

      14               0.156 

      15               0.194 

      16               0.270 

      17               0.565 

      18               1.387 

      19               3.314 

 

SCATTERPLOT - Plot of Error vs No. of Groups 

 

                                                         Size of Error 

.                             |                             |-  3.48 

                              |                             |-  3.31 

                              |                             |-  3.15 

                              |                             |-  2.98 

                              |                             |-  2.82 

                              |                             |-  2.65 

                              |                             |-  2.49 

                              |                             |-  2.32 

                              |                             |-  2.15 

                              |                             |-  1.99 

------------------------------------------------------------|-  1.82 

.                             |                             |-  1.66 

                              |                             |-  1.49 

                              |                             |-  1.33 

                              |                             |-  1.16 

                              |                             |-  0.99 

   .                          |                             |-  0.83 

                              |                             |-  0.66 

      .   .                   |                             |-  0.50 

             .  .   .  .  .   *  .  .   .  .  .             |-  0.33 

_______________________________________________________________ 

   |     |     |     |     |     |     |     |     |     |   

No. of Groups 

  2.00  4.00  6.00  8.00 10.00 12.00 14.00 16.00 18.00 20.00 
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PART 1 OUTPUT 

UNIT    17   15    4    7   11    9    8    6   20   14    5    2    1   19   18  

STEP     *    *    *    *    *    *    *    *    *    *    *    *    *    *    *  

  1      *    *    *    *    *    *    *    *    *    *    *    ******    *    *  

         *    *    *    *    *    *    *    *    *    *    *      *       *    *  

  2      *    *    *    *    *    ******    *    *    *    *      *       *    *  

         *    *    *    *    *      *       *    *    *    *      *       *    *  

  3      *    *    *    ******      *       *    *    *    *      *       *    *  

         *    *    *      *         *       *    *    *    *      *       *    *  

  4      *    *    *      *         ********************************************* 

         *    *    *      *                 *    *    *    **     *       *    *  

  5      *    *    *      *                 *    *    *    **     **************  

         *    *    *      *                 *    *    *    **           * *       

  6      *    *    *      *                 ******    *    **           * *       

         *    *    *      *                   *       *    **           * *       

  7      *    *    *      ***********************************           * *       

         *    *    *                       *  *       *    *            * *       

  8      *    *    *                       ************************************** 

         *    *    *                          *       *    *      *     * *       

  9      *    *    *                          *       *    *      *     * *       

         *    *    *                          *       *    *      *     * *       

 10      *    *    *                                  * *  *            * *       

         *    *    *                                  * *  *            * *       

 11      *    ******                                  * *  *            * *       

         *      *                                     * *  *            * *       

 12      *      *****************************************  *            * *       

         *                          *                 *    *            * *       

 13      *                          *                 *    *            ***       

         *                          *                 *    *             *        

 14      *                          *                 ******             *        

         *                          *                   *                *        

 15      *                          *                   ******************        

         *                          *                           *                 

 16      *                          ********************************************* 

         *                                                      * *               

 17      *                                                       *                

         *                                                       *                

 18      *********************************************************                

                                     *                                            

 19                                  ******************************************** 

                                                                      *           

 20                                                                   *           

                                                                      *           

 

PART 2 OUTPUT 

   3   13   12   16   10 

   *    *    *    *    * 

   *    *    *    *    *   

   *    *    *    *    *   

   *    *    *    *    *   

   *    *    *    *    *   

   *    *    *    *    *   

   *    *    *    *    *   

****    *    *    *    *   

        *    *    *    *   

        *    *    *    *   

        *    *    *    *   

        *    *    *    *   

        *    *    *    *   

        *    *    *    *   

        *    *    *    *   

*********    *    *    *   

             *    *    *   

             ******    *   

               *       *   

               *       *   

               *       *   

               *       *   

               *       *   

               *       *   

               *       *   

               *       *   

               *       *   
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               *       *   

               *       *   

               *       *   

               *       *   

****************       *   

                       *   

                       *   

                       *   

                       *   

                       *   

************************   

                      

                           

 

 

Path Analysis 

 

Example of a Path Analysis 

 

 In this example we will use the file CANSAS.LAZ.  The user begins by selecting the Path Analysis option of the 

Statistics / Multivariate menu.  In the Fig. below we have selected all variables to analyze and have entered our first 

path indicating that waist size is “caused” by weight: 

 

 

Fig. 7.9   Path Analysis Form 

 

We will also hypothesize that pulse rate is “caused” by weight, chin-ups are “caused” by weight, waist and pulse, that 

the number of sit-ups is “caused” by weight, waist and pulse and that jumps are “caused” by weight, waist and pulse.  

Each time we enter a new causal relationship we click the scroll bar to move to a new model number prior to 

entering the “caused” and “causing” variables.  Once we have entered each model, we then click on the Compute 

button.  Note we have elected to print descriptive statistics, each models correlation matrix, and the reproduced 

correlation matrix which will be our measure of how well the models “fit” the data.  The results are shown below: 

 
PATH ANALYSIS RESULTS 

 

CAUSED VARIABLE: waist  

     Causing Variables: 

    weight  

CAUSED VARIABLE: pulse  

     Causing Variables: 

    weight  

CAUSED VARIABLE: chins  

     Causing Variables: 

    weight  

    waist  

    pulse  

CAUSED VARIABLE: situps  

     Causing Variables:  
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    weight  

    waist  

    pulse  

CAUSED VARIABLE: jumps 

     Causing Variables: 

    weight  

    waist  

    pulse  

 

 

Correlation Matrix with   20 valid cases. 

 

Variables 

                weight        waist        pulse        chins       situps  

   weight        1.000        0.870       -0.366       -0.390       -0.493  

    waist        0.870        1.000       -0.353       -0.552       -0.646  

    pulse       -0.366       -0.353        1.000        0.151        0.225  

    chins       -0.390       -0.552        0.151        1.000        0.696  

   situps       -0.493       -0.646        0.225        0.696        1.000  

     jumps      -0.226       -0.191        0.035        0.496        0.669  

 

 

Variables 

                  jumps 

   weight       -0.226  

    waist       -0.191  

    pulse        0.035  

    chins        0.496  

   situps        0.669  

     jumps       1.000  

 

 

MEANS with   20 valid cases. 

 

Variables      weight        waist        pulse        chins       situps  

               178.600       35.400       56.100        9.450      145.550  

 

Variables        jumps 

                70.300  

 

VARIANCES with   20 valid cases. 

 

Variables      weight        waist        pulse        chins       situps  

               609.621       10.253       51.989       27.945     3914.576  

 

Variables        jumps 

              2629.379  

 

 

STANDARD DEVIATIONS with   20 valid cases. 

 

Variables      weight        waist        pulse        chins       situps  

                24.691        3.202        7.210        5.286       62.567  

 

Variables        jumps 

                51.277  

 

Dependent Variable = waist  

 

 

Correlation Matrix with   20 valid cases. 

 

 

Variables 

                weight        waist  

   weight        1.000        0.870  

    waist        0.870        1.000  

 

 

 

 

MEANS with   20 valid cases. 

 

Variables      weight        waist  
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               178.600       35.400  

 

 

VARIANCES with   20 valid cases. 

 

Variables      weight        waist  

               609.621       10.253  

 

 

STANDARD DEVIATIONS with   20 valid cases. 

 

Variables      weight        waist  

                24.691        3.202  

 

Dependent Variable = waist  

 

       R        R2         F     Prob.>F  DF1  DF2 

   0.870     0.757    56.173     0.000    1   18 

Adjusted R Squared = 0.744 

 

Std. Error of Estimate =      1.621 

 

Variable       Beta      B         Std.Error t         Prob.>t 

   weight      0.870     0.113     0.015     7.495     0.000 

 

Constant =     15.244 

 

Dependent Variable = pulse  

 

 

Correlation Matrix with   20 valid cases. 

 

 

Variables 

                weight        pulse  

   weight        1.000       -0.366  

    pulse       -0.366        1.000  

 

 

MEANS with   20 valid cases. 

 

Variables      weight        pulse  

               178.600       56.100  

 

 

VARIANCES with   20 valid cases. 

 

Variables      weight        pulse  

               609.621       51.989  

 

 

STANDARD DEVIATIONS with   20 valid cases. 

 

Variables      weight        pulse  

                24.691        7.210  

 

Dependent Variable = pulse  

 

       R        R2         F     Prob.>F  DF1  DF2 

   0.366     0.134     2.780     0.113    1   18 

Adjusted R Squared = 0.086 

 

Std. Error of Estimate =      6.895 

 

Variable       Beta      B         Std.Error t         Prob.>t 

   weight     -0.366    -0.107     0.064    -1.667     0.113 

 

Constant =     75.177 

 

Dependent Variable = chins  
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Correlation Matrix with   20 valid cases. 

 

 

Variables 

                weight        waist        pulse        chins  

   weight        1.000        0.870       -0.366       -0.390  

    waist        0.870        1.000       -0.353       -0.552  

    pulse       -0.366       -0.353        1.000        0.151  

    chins       -0.390       -0.552        0.151        1.000  

 

 

 

 

MEANS with   20 valid cases. 

 

Variables      weight        waist        pulse        chins  

               178.600       35.400       56.100        9.450  

 

 

VARIANCES with   20 valid cases. 

 

Variables      weight        waist        pulse        chins  

               609.621       10.253       51.989       27.945  

 

 

STANDARD DEVIATIONS with   20 valid cases. 

 

Variables      weight        waist        pulse        chins  

                24.691        3.202        7.210        5.286  

 

Dependent Variable = chins  

 

       R        R2         F     Prob.>F  DF1  DF2 

   0.583     0.340     2.742     0.077    3   16 

Adjusted R Squared = 0.216 

 

Std. Error of Estimate =      4.681 

 

Variable       Beta      B         Std.Error t         Prob.>t 

   weight      0.368     0.079     0.089     0.886     0.389 

    waist     -0.882    -1.456     0.683    -2.132     0.049 

    pulse     -0.026    -0.019     0.160    -0.118     0.907 

 

Constant =     47.968 

 

Dependent Variable = situps  

 

 

Correlation Matrix with   20 valid cases. 

 

 

Variables 

                weight        waist        pulse       situps  

   weight        1.000        0.870       -0.366       -0.493  

    waist        0.870        1.000       -0.353       -0.646  

    pulse       -0.366       -0.353        1.000        0.225  

   situps       -0.493       -0.646        0.225        1.000  

 

 

 

 

MEANS with   20 valid cases. 

 

Variables      weight        waist        pulse       situps  

               178.600       35.400       56.100      145.550  

 

 

VARIANCES with   20 valid cases. 

 

Variables      weight        waist        pulse       situps  

               609.621       10.253       51.989     3914.576  

STANDARD DEVIATIONS with   20 valid cases. 
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Variables      weight        waist        pulse       situps  

                24.691        3.202        7.210       62.567  

 

Dependent Variable = situps  

 

       R        R2         F     Prob.>F  DF1  DF2 

   0.661     0.436     4.131     0.024    3   16 

Adjusted R Squared = 0.331 

 

Std. Error of Estimate =     51.181 

 

Variable       Beta      B         Std.Error t         Prob.>t 

   weight      0.287     0.728     0.973     0.748     0.466 

    waist     -0.890   -17.387     7.465    -2.329     0.033 

    pulse      0.016     0.139     1.755     0.079     0.938 

 

Constant =    623.282 

 

Dependent Variable = jumps 

 

 

Correlation Matrix with   20 valid cases. 

 

 

Variables 

                weight        waist        pulse         jumps 

   weight        1.000        0.870       -0.366       -0.226  

    waist        0.870        1.000       -0.353       -0.191  

    pulse       -0.366       -0.353        1.000        0.035  

     jumps      -0.226       -0.191        0.035        1.000  

 

 

MEANS with   20 valid cases. 

 

Variables      weight        waist        pulse         jumps 

               178.600       35.400       56.100       70.300  

 

 

VARIANCES with   20 valid cases. 

 

Variables      weight        waist        pulse         jumps 

               609.621       10.253       51.989     2629.379  

 

 

STANDARD DEVIATIONS with   20 valid cases. 

 

Variables      weight        waist        pulse         jumps 

                24.691        3.202        7.210       51.277  

 

Dependent Variable = jumps 

 

       R        R2         F     Prob.>F  DF1  DF2 

   0.232     0.054     0.304     0.822    3   16 

Adjusted R Squared = -0.123 

 

Std. Error of Estimate =     54.351 

 

Variable       Beta      B         Std.Error t         Prob.>t 

   weight     -0.259    -0.538     1.034    -0.520     0.610 

    waist      0.015     0.234     7.928     0.029     0.977 

    pulse     -0.055    -0.389     1.863    -0.209     0.837 

 

Constant =    179.887 
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Matrix of Path Coefficients with   20 valid cases. 

 

 

Variables 

                weight        waist        pulse        chins       situps  

   weight        0.000        0.870       -0.366        0.368        0.287  

    waist        0.870        0.000        0.000       -0.882       -0.890  

    pulse       -0.366        0.000        0.000       -0.026        0.016  

    chins        0.368       -0.882       -0.026        0.000        0.000  

   situps        0.287       -0.890        0.016        0.000        0.000  

     jumps      -0.259        0.015       -0.055        0.000        0.000  

 

 

Variables 

                  jumps 

   weight       -0.259  

    waist        0.015  

    pulse       -0.055  

    chins        0.000  

   situps        0.000  

     jumps       0.000  

 

SUMMARY OF CAUSAL MODELS 

Var. Caused    Causing Var.  Path Coefficient 

      waist         weight    0.870 

      pulse         weight   -0.366 

      chins         weight    0.368 

      chins          waist   -0.882 

      chins          pulse   -0.026 

     situps         weight    0.287 

     situps          waist   -0.890 

     situps          pulse    0.016 

       jumps        weight   -0.259 

       jumps         waist    0.015 

       jumps         pulse   -0.055 

 

Reproduced Correlation Matrix with   20 valid cases. 

 

 

Variables 

                weight        waist        pulse        chins       situps  

   weight        1.000        0.870       -0.366       -0.390       -0.493  

    waist        0.870        1.000       -0.318       -0.553       -0.645  

    pulse       -0.366       -0.318        1.000        0.120        0.194  

    chins       -0.390       -0.553        0.120        1.000        0.382  

   situps       -0.493       -0.645        0.194        0.382        1.000  

     jumps      -0.226       -0.193        0.035        0.086        0.108  

 

 

Variables 

                  jumps 

   weight       -0.226  

    waist       -0.193  

    pulse        0.035  

    chins        0.086  

   situps        0.108  

     jumps       1.000  

 

 

Average absolute difference between observed and reproduced 

coefficients := 0.077 

Maximum difference found := 0.562 

 

Data Array of Subject Path z Scores with   20 cases. 

 

 

Variables 

                 weight        waist        pulse        chins       situps 

 Subject 1       0.502        0.437       -0.184       -0.196        0.263  

 Subject 2       0.421        0.367       -0.154       -0.164       -0.568  

 Subject 3       0.583        0.508       -0.213       -0.227       -0.712  

 Subject 4      -0.672       -0.585        0.246        0.262       -0.648  

 Subject 5       0.421        0.367       -0.154       -0.164        0.151  
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 Subject 6       0.138        0.120       -0.050       -0.054       -0.712  

 Subject 7       1.312        1.142       -0.480       -0.511       -0.712  

 Subject 8      -0.470       -0.409        0.172        0.183       -0.328  

 Subject 9      -0.105       -0.092        0.039        0.041        0.870  

Subject 10      -0.996       -0.867        0.364        0.388        1.685  

Subject 11      -0.389       -0.338        0.142        0.152       -0.408  

Subject 12      -0.510       -0.444        0.187        0.199        1.030  

Subject 13      -0.996       -0.867        0.364        0.388        1.110  

Subject 14       2.770        2.411       -1.013       -1.080       -1.527  

Subject 15       0.583        0.508       -0.213       -0.227       -1.208  

Subject 16       0.948        0.825       -0.347       -0.369        1.030  

Subject 17      -0.105       -0.092        0.039        0.041       -1.367  

Subject 18      -0.875       -0.761        0.320        0.341        1.350  

Subject 19      -0.915       -0.797        0.335        0.357        1.270  

Subject 20      -1.644       -1.431        0.601        0.641       -0.568  

 

 

Variables 

                  jumps 

 Subject 1      -0.114  

 Subject 2      -0.095  

 Subject 3      -0.132  

 Subject 4       0.152  

 Subject 5      -0.095  

 Subject 6      -0.031  

 Subject 7      -0.297  

 Subject 8       0.106  

 Subject 9       0.024  

Subject 10       0.225  

Subject 11       0.088  

Subject 12       0.115  

Subject 13       0.225  

Subject 14      -0.627  

Subject 15      -0.132  

Subject 16      -0.214  

Subject 17       0.024  

Subject 18       0.198  

Subject 19       0.207  

Subject 20       0.372 

 

 We note that pulse is not a particularly important predictor of chin-ups or sit-ups.  The largest discrepancy of 0.562 

between an original correlation and a correlation reproduced using the path coefficients indicates our model of 

causation may have been inadequate. 

 

Factor Analysis 

 

 The sample factor analysis completed below utilizes a data set labeled cansas.laz as used in the previous path 

analysis example .   The canonical factor analysis method was used andthe varimax rotation method was used. 

 

 Shown below is the factor analysis form selected by choosing the factor analysis option under the Statistics / 

Multivariate menu: 
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Fig. 7.10   Factor Analysis Dialog 

 

Note the options elected in the above form.  The results obtained are shown below: 

Fig. 7.11   Scree Plot of Eigenvalues 

 

 
Factor Analysis 

See Rummel, R.J., Applied Factor Analysis 

Northwestern University Press, 1970 

 

Canonical Factor Analysis 

Original matrix trace =  18.56 

Roots (Eigenvalues) Extracted: 

   1 15.512 

   2  3.455 

   3  0.405 

   4  0.010 

   5 -0.185 

   6 -0.641 

 

Unrotated Factor Loadings 

 

FACTORS with   20 valid cases. 

 

 

Variables 

               Factor 1     Factor 2     Factor 3     Factor 4     Factor 5 

   weight        0.858       -0.286        0.157       -0.006        0.000  

    waist        0.928       -0.201       -0.066       -0.003        0.000  
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    pulse       -0.360        0.149       -0.044       -0.089        0.000  

    chins       -0.644       -0.382        0.195        0.009        0.000  

   situps       -0.770       -0.472        0.057       -0.009        0.000  

     jumps      -0.409       -0.689       -0.222        0.005        0.000  

 

 

Variables 

               Factor 6 

   weight        0.000  

    waist        0.000  

    pulse        0.000  

    chins        0.000  

   situps        0.000  

     jumps       0.000  

 

 

Percent of Trace In Each Root: 

   1 Root := 15.512 Trace := 18.557 Percent :=  83.593 

   2 Root :=  3.455 Trace := 18.557 Percent :=  18.621 

   3 Root :=  0.405 Trace := 18.557 Percent :=   2.180 

   4 Root :=  0.010 Trace := 18.557 Percent :=   0.055 

   5 Root := -0.185 Trace := 18.557 Percent :=  -0.995 

   6 Root := -0.641 Trace := 18.557 Percent :=  -3.455 

 

COMMUNALITY ESTIMATES 

  1 weight      0.844 

  2 waist       0.906 

  3 pulse       0.162 

  4 chins       0.598 

  5 situps      0.819 

  6 jumps       0.692 

 

Proportion of variance in unrotated factors 

 

  1 48.364 

  2 16.475 

 

 

Communality Estimates as percentages: 

  1 81.893 

  2 90.153 

  3 15.165 

  4 56.003 

  5 81.607 

  6 64.217 

 

Varimax Rotated Loadings with   20 valid cases. 

 

Variables 

               Factor 1     Factor 2 

   weight       -0.882       -0.201  

    waist       -0.898       -0.310  

    pulse        0.385        0.059  

    chins        0.352        0.660  

   situps        0.413        0.803  

     jumps      -0.009        0.801  

 

Percent of Variation in Rotated Factors 

Factor   1 33.776 

Factor   2 31.064 

 

Total Percent of Variance in Factors : 64.840 

Communalities as Percentages 

  1 for         weight  81.893 

  2 for          waist  90.153 

  3 for          pulse  15.165 

  4 for          chins  56.003 

  5 for         situps  81.607 

  6 for           jumps 64.217 
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             SCATTERPLOT - FACTOR PLOT 

Factor 2 

 |                             |                              |-  0.95-  1.00 

 |                             |                              |-  0.90-  0.95 

 |                             |                              |-  0.85-  0.90 

 |                             2           1                  |-  0.80-  0.85 

 |                             |                              |-  0.75-  0.80 

 |                             |                              |-  0.70-  0.75 

 |                             |          3                   |-  0.65-  0.70 

 |                             |                              |-  0.60-  0.65 

 |                             |                              |-  0.55-  0.60 

 |                             |                              |-  0.50-  0.55 

 |                             |                              |-  0.45-  0.50 

 |                             |                              |-  0.40-  0.45 

 |                             |                              |-  0.35-  0.40 

 |                             |                              |-  0.30-  0.35 

 |                             |                              |-  0.25-  0.30 

 |                             |                              |-  0.20-  0.25 

 |                             |                              |-  0.15-  0.20 

 |                             |                              |-  0.10-  0.15 

 |                             |           4                  |-  0.05-  0.10 

 |------------------------------------------------------------|-  0.00-  0.05 

 |                             |                              |- -0.05-  0.00 

 |                             |                              |- -0.10- -0.05 

 |                             |                              |- -0.15- -0.10 

 |                             |                              |- -0.20- -0.15 

 |   5                         |                              |- -0.25- -0.20 

 |                             |                              |- -0.30- -0.25 

 |  6                          |                              |- -0.35- -0.30 

 |                             |                              |- -0.40- -0.35 

 |                             |                              |- -0.45- -0.40 

 |                             |                              |- -0.50- -0.45 

 |                             |                              |- -0.55- -0.50 

 |                             |                              |- -0.60- -0.55 

 |                             |                              |- -0.65- -0.60 

 |                             |                              |- -0.70- -0.65 

 |                             |                              |- -0.75- -0.70 

 |                             |                              |- -0.80- -0.75 

 |                             |                              |- -0.85- -0.80 

 |                             |                              |- -0.90- -0.85 

 |                             |                              |- -0.95- -0.90 

 |                             |                              |- -1.00- -0.95 

--------------------------------------------------------------- 

  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | Factor 1 

-1.0-0.9-0.7-0.6-0.5-0.3-0.2-0.1 0.1 0.2 0.3 0.5 0.6 0.7 0.9 1.0 

 

 

Labels: 

 1 = situps  

 2 = jumps 

 3 = chins  

 4 = pulse  

 5 = weight  

 6 = waist  

 

SUBJECT FACTOR SCORE RESULTS: 

 

Regression Coefficients with   20 valid cases. 

 

 

Variables 

               Factor 1     Factor 2 

   weight       -0.418        0.150  

    waist       -0.608        0.080  

    pulse        0.042       -0.020  

    chins       -0.024        0.203  

   situps       -0.069        0.526  

     jumps      -0.163        0.399  

 

 

Standard Error of Factor Scores: 

Factor 1    0.946 

Factor 2    0.905 
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We note that two factors were extracted with eigenvalues greater than 1.0 and when rotated indicate that the three 

body measurements appear to load on one factor and that the performance measures load on the second factor.  The 

data grid also now contains the “least-squares” factor scores for each subject.  Hummm!  I wonder what a 

hierarchical grouping of these subjects on the two factor scores would produce! 

   

Correspondence Analysis 

 
 Correspondence analysis is a method for examining the relationship between two sets of categorical variables much 

as in a Chi-Squared analysis of a two-way contingency table.  In fact, a typical chi-squared analysis is completed as 

part of this procedure.  In addition, visualization of the relationships among the columns or rows of the analysis is 

performed in a manner similar to factor analysis.  The data analyzed in the visualization is the table of relative 

proportions, that is, the original frequency values divided by the sum of all frequencies.  The relative proportions of 

the row sums and the column sums are termed the “masses” of the rows or columns. 

 

 The method used to analyze the relative proportions involves what is now called the “Generalized Singular Value 

Decomposition” or more simply the generalized SVD.  This method obtains roots and vectors of a rectangular 

matrix by decomposing that matrix into three portions: a matrix of left singular column vectors (A) that has n rows 

and q columns (n  q),  a square diagonal matrix with q rows and columns of singular values (D), and a transposed 

matrix (B’) that is m x q in size of right generalized singular vectors (m = q-1).  Completing this analysis involves 

several steps.  The first is to obtain the (regular) SVD analysis of a matrix Q defined as Dr
-1/2

 P Dc
-1/2

 where Dr and 

Dc are diagonal matrices of row and column relative proportions and P is the matrix of relative proportions.  The 

SVD of Q gives  

Q = U D V’ where D is the desired diagonal matrix of eigenvalues and U’U = V’V = I.  It should be noted that the 

first of the q roots is trivial and to be ignored.  At this point we obtain A = Dr
1/2

 Uand B = Dc
1/2

 V. The results of this 

SVD analysis is available on the output.  Now P = ADB’.  The row coordinates F and column coordinates G are then 

computed according to the table below: 

 

Analysis Choice Button Selected Row Coordinates Column Coordinates 

Row Profile Row F = Dr
-1

AD G = Dc
-1

B 

Column Profile Column F = Dr
-1

A G = Dc
-1

BD 

Both Profiles Both F = Dr
-1

AD G = Dc
-1

BD 

  

If Row profiles are computed, the row coordinates are weighted centroids of the column coordinates and the inertias 

D
2
 refer only to the row points.  If the column profiles are computed, the column coordinates are weighted eentroids 

of the row coordinates and the inertias D
2 
refer only to the column points.  If both profiles are selected, neither row 

or column coordinates are weighted centroids of the other but the inertias D
2
 refer to both sets of points.  The q-1 

inertias are plotted in a manner similar to a scree plot of roots in a factor analysis.  The total inertia is, in fact, the 

chi-squared statistic divided by the total of all cell frequencies. 

 

 You may elect to plot the coordinates for any two pairs of coordinates.  This will provide a graphical representation 

of the separation of the row or column categories similar to a plot of variables in a discriminant function analysis or 

factors in a factor analysis.  A way of looking at correspondence analysis is to consider it as a method for 

decomposing the overall inertia by identifying a small number of dimensions in which the deviations from the 

expected values can be represented.  This is similar to factor analysis where the total variance is decomposed so as 

to arrive at a lower dimensional representation of variables. 

 

 An example is the file labeled “Smokers.LAZ” that we will use for a correspondence analysis.  The specifications 

form is shown below: 
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Fig. 7.12  Correspondence Analysis Form 

 

When you click the “Compute” button you obtain the following: 

 
CORRESPONDENCE ANALYSIS 

Based on formulations of Bee-Leng Lee 

Chapter 11 Correspondence Analysis for ViSta 

Results are based on the Generalized Singular Value Decomposition 

of P := A x D x B where P is the relative frequencies observed, 

A are the left generalized singular vectors, 

D is a diagonal matrix of generalized singular values, and 

B is the transpose of the right generalized singular vectors. 

NOTE: The first value and corresponding vectors are 1 and are 

to be ignored. 

An intermediate step is the regular SVD of the matrix Q := UDV 

where Q := Dr^-1/2 x P x Dc^-1/2 where Dr is a diagonal matrix 

of total row relative frequencies and Dc is a diagonal matrix 

of total column relative frequencies. 

Chi-square Analysis Results 

No. of Cases := 193 

 

 

OBSERVED FREQUENCIES 

 

 

                        Frequencies 

Variables 

                  None        Light       Medium        Heavy        Total 

Senior_Mgr.           4            2            3            2           11  

Junior_Mgr.           4            3            7            4           18  

Senior_Emp.          25           10           12            4           51  

Junior_Emp.          18           24           33           13           88  

Secretaries          10            6            7            2           25  

     Total          61           45           62           25          193  

EXPECTED FREQUENCIES with    5 cases. 

 

 

Variables 

                   None        Light       Medium        Heavy 

Senior_Mgr.       3.477        2.565        3.534        1.425  

Junior_Mgr.       5.689        4.197        5.782        2.332  

Senior_Emp.      16.119       11.891       16.383        6.606  

Junior_Emp.      27.813       20.518       28.269       11.399  

Secretaries       7.902        5.829        8.031        3.238  

ROW PROPORTIONS with    5 cases. 
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Variables 

                   None        Light       Medium        Heavy        Total 

Senior_Mgr.       0.364        0.182        0.273        0.182        1.000  

Junior_Mgr.       0.222        0.167        0.389        0.222        1.000  

Senior_Emp.       0.490        0.196        0.235        0.078        1.000  

Junior_Emp.       0.205        0.273        0.375        0.148        1.000  

Secretaries       0.400        0.240        0.280        0.080        1.000  

     Total       0.316        0.233        0.321        0.130        1.000  

COLUMN PROPORTIONS with    5 cases. 

 

 

Variables 

                   None        Light       Medium        Heavy        Total 

Senior_Mgr.       0.066        0.044        0.048        0.080        0.057  

Junior_Mgr.       0.066        0.067        0.113        0.160        0.093  

Senior_Emp.       0.410        0.222        0.194        0.160        0.264  

Junior_Emp.       0.295        0.533        0.532        0.520        0.456  

Secretaries       0.164        0.133        0.113        0.080        0.130  

     Total       1.000        1.000        1.000        1.000        1.000  

PROPORTIONS OF TOTAL N with    5 cases. 

 

 

Variables 

                   None        Light       Medium        Heavy        Total 

Senior_Mgr.       0.021        0.010        0.016        0.010        0.057  

Junior_Mgr.       0.021        0.016        0.036        0.021        0.093  

Senior_Emp.       0.130        0.052        0.062        0.021        0.264  

Junior_Emp.       0.093        0.124        0.171        0.067        0.456  

Secretaries       0.052        0.031        0.036        0.010        0.130  

     Total       0.316        0.233        0.321        0.130        1.000  

CHI-SQUARED VALUE FOR CELLS with    5 cases. 

 

 

Variables 

                   None        Light       Medium        Heavy 

Senior_Mgr.       0.079        0.124        0.081        0.232  

Junior_Mgr.       0.502        0.341        0.256        1.194  

Senior_Emp.       4.893        0.301        1.173        1.028  

Junior_Emp.       3.463        0.591        0.792        0.225  

Secretaries       0.557        0.005        0.132        0.474  

Chi-square :=   16.442 with D.F. := 12. Prob. > value :=    0.172 

 

Liklihood Ratio :=   16.348 with prob. > value := 0.1758 

 

phi correlation := 0.2919 

 

Pearson Correlation r := 0.0005 

 

Mantel-Haenszel Test of Linear Association :=    0.000 with probability > value := 0.9999 

 

The coefficient of contingency :=    0.280 

 

Cramers V :=    0.169 

Q Matrix with    5 cases. 

 

 

Variables 

                   None        Light       Medium        Heavy 

Senior_Mgr.       0.154        0.090        0.115        0.121  

Junior_Mgr.       0.121        0.105        0.210        0.189  

Senior_Emp.       0.448        0.209        0.213        0.112  

Junior_Emp.       0.246        0.381        0.447        0.277  

Secretaries       0.256        0.179        0.178        0.080  

P =  with    5 cases. 

 

 

Variables 

                   None        Light       Medium        Heavy 

Senior_Mgr.       0.012       -0.002        0.041        0.003  

Junior_Mgr.      -2.138       -0.463       -0.305        0.015  

Senior_Emp.       3.911        0.778        0.679       -0.066  

Junior_Emp.      -1.342       -0.451       -0.651        0.077  

Secretaries       0.000        0.000        0.000        0.000 

Inertia :=   0.0852 
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Row Dimensions (Ignore Col. 1 with    5 cases. 

 

 

Variables 

                   None        Light       Medium        Heavy 

Senior_Mgr.       0.396       -0.267       13.267        8.441  

Junior_Mgr.     -43.680      -39.212      -60.876       21.692  

Senior_Emp.      28.202       23.251       47.807      -34.659  

Junior_Emp.      -5.610       -7.813      -26.547       23.555  

Secretaries       0.000        0.000        0.000        0.000  

 

Row Dimensions (Ignore Col. 1 with    5 cases. 

 

 

Variables 

                   None        Light       Medium        Heavy 

Senior_Mgr.       0.396       -0.267       13.267        8.441  

Junior_Mgr.     -43.680      -39.212      -60.876       21.692  

Senior_Emp.      28.202       23.251       47.807      -34.659  

Junior_Emp.      -5.610       -7.813      -26.547       23.555  

Secretaries       0.000        0.000        0.000        0.000  

 

 

 

 

Column Dimensions (Ignore Col. 1) with    5 cases. 

 

 

Variables 

                   None        Light       Medium        Heavy 

      None      -0.893        1.382       -0.219       -0.044  

     Light      -0.261       -0.101        0.372        0.279  

    Medium      -0.097       -0.066        0.004       -0.120  

     Heavy      -0.021       -0.019       -0.040        0.026  

 

Bartlett's Test of Sphericity 

 

 

In matrix algebra, the determinate of an identity matrix is equal to 1.0.  

 

The procedure calculates the determinate of the matrix of the sums of products and cross-products (S) from which an 

intercorrelation matrix is derived. 

 

The determinant of the matrix S is converted to a chi-square statistic and tested for significance. 

 

The null hypothesis is that the intercorrelation matrix comes from a population in which the variables are 

noncollinear (i.e. an identity matrix) and that the non-zero correlations in the sample matrix are due to sampling 

error. 

 

Statistical Decision:  if the sample intercorrelation matrix did not come from a population in which the 

intercorrelation matrix is an identity matrix the probability of the chi-square value will be small. 

 

The example below uses the “Cansas.LAZ” file: 
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Fig. 7.13  The Bartlett Test of Sphericity Form 

 

The results obtained are: 

 
CORRELATION MATRIX with   20 cases. 

 

 

Variables 

                 weight        waist        pulse        chins       situps 

    weight       1.000        0.870       -0.366       -0.390       -0.493  

     waist       0.870        1.000       -0.353       -0.552       -0.646  

     pulse      -0.366       -0.353        1.000        0.151        0.225  

     chins      -0.390       -0.552        0.151        1.000        0.696  

    situps      -0.493       -0.646        0.225        0.696        1.000  

     jumps      -0.226       -0.191        0.035        0.496        0.669  

 

 

Variables 

                  jumps 

    weight      -0.226  

     waist      -0.191  

     pulse       0.035  

     chins       0.496  

    situps       0.669  

     jumps       1.000  

 

Determinant of matrix =    0.021 

chisquare =   69.067, D.F. = 15, Proabability greater value =    0.000 

Log Linear Analysis for Cross-Classified Data 

 

 The contingency chi-square test for independence of two categorical variables is often employed 

in elementary statistical applications.  However, the cell frequencies in a table can also be 

modeled as a regression model where the frequency is a function of the weighted sum of row 

effects, column effects, interaction effects and error.  In practice the log of the frequencies is the 

dependent variable.  This linear model can be expanded to three way or more tables.  The 

investigator will often want to test the individual effects of rows, columns, slices, two-way 

interactions, three-way interactions, etc. 

 

 Three procedures are available for log linear analysis of classification data.  These are described 

and illustrated in each of the sections below. 

 

Log Linear for an A x B Classification Table I 

Log Linear Analysis for an A x B x C Classification Table 

Log Linear Screen 
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Log Linear for an A x B Classification Table 

 

 When you elect this analysis you see the dialogue boxes shown below.  The difference depends 

on whether you are entering data from the main grid or if you are entering data directly on the 

form.  In our example, we are entering data stored in a file labeled "ABCLogLinData.LAZ" and 

loaded into the Main Form grid.  The results of the analysis is shown below these dialogue 

boxes.  Each parameter is tested using the "G" statistic which is approximately chi-squared. 

 

 

Fig. 7.14   AxB Log Linear Analysis Dialogue Form 

 
ANALYSES FOR AN I BY J CLASSIFICATION TABLE 

 

Reference: G.J.G. Upton, The Analysis of Cross-tabulated Data, 1980 

 

Cross-Products Odds Ratio =  1.583 

Log odds of the cross-products ratio =  0.460 

 

Saturated Model Results 

 

Observed Frequencies 

ROW/COL        1         2      TOTAL 

     1        27.00     36.00     63.00  

     2        27.00     57.00     84.00  

TOTAL         54.00     93.00    147.00  

 

Log frequencies, row average and column average of log frequencies 

ROW/COL        1         2      TOTAL 

     1         3.30      3.58      3.44  

     2         3.30      4.04      3.67  

TOTAL          3.30      3.81      3.55  

 

Expected Frequencies 

ROW/COL        1         2      TOTAL 

     1        27.00     36.00     63.00  

     2        27.00     57.00     84.00  

TOTAL         54.00     93.00    147.00  

 

Cell Parameters 

ROW COL   MU      LAMBDA ROW   LAMBDA COL   LAMBDA ROW x COL 

  1   1  3.555     -0.115       -0.259        0.115       

  1   2  3.555     -0.115        0.259       -0.115       

  2   1  3.555      0.115       -0.259       -0.115       

  2   2  3.555      0.115        0.259        0.115       

 

Y squared statistic for model fit = -0.000 D.F. = 0 

Independent Effects Model Results 

 

Expected Frequencies 
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ROW/COL        1         2      TOTAL 

     1        23.14     39.86     63.00  

     2        30.86     53.14     84.00  

TOTAL         54.00     93.00    147.00  

 

Cell Parameters 

ROW COL   MU      LAMBDA ROW   LAMBDA COL   LAMBDA ROW x COL 

  1   1  3.557     -0.144       -0.272        0.000       

  1   2  3.557     -0.144        0.272        0.000       

  2   1  3.557      0.144       -0.272        0.000       

  2   2  3.557      0.144        0.272        0.000       

 

 

Y squared statistic for model fit =  1.773 D.F. = 1 

Chi-squared =  1.778 with 1 D.F. 

No Column Effects Model Results 

 

Expected Frequencies 

ROW/COL        1         2      TOTAL 

     1        31.50     31.50     63.00  

     2        42.00     42.00     84.00  

TOTAL         73.50     73.50    147.00  

 

Cell Parameters 

ROW COL   MU      LAMBDA ROW   LAMBDA COL   LAMBDA ROW x COL 

  1   1  3.594     -0.144        0.000       -0.000       

  1   2  3.594     -0.144        0.000       -0.000       

  2   1  3.594      0.144        0.000       -0.000       

  2   2  3.594      0.144        0.000       -0.000       

 

 

Y squared statistic for model fit = 12.245 D.F. = 2 

No Row Effects Model Results 

 

Expected Frequencies 

ROW/COL        1         2      TOTAL 

     1        27.00     46.50     73.50  

     2        27.00     46.50     73.50  

TOTAL         54.00     93.00    147.00  

 

Cell Parameters 

ROW COL   MU      LAMBDA ROW   LAMBDA COL   LAMBDA ROW x COL 

  1   1  3.568      0.000       -0.272        0.000       

  1   2  3.568      0.000        0.272        0.000       

  2   1  3.568      0.000       -0.272        0.000       

  2   2  3.568      0.000        0.272        0.000       

 

 

Y squared statistic for model fit =  4.783 D.F. = 2 

Equiprobability Effects Model Results 

 

Expected Frequencies 

ROW/COL        1         2      TOTAL 

     1        36.75     36.75     36.75  

     2        36.75     36.75     36.75  

TOTAL         36.75     36.75    147.00  

 

Cell Parameters 

ROW COL   MU      LAMBDA ROW   LAMBDA COL   LAMBDA ROW x COL 

  1   1  3.604      0.000        0.000        0.000       

  1   2  3.604      0.000        0.000        0.000       

  2   1  3.604      0.000        0.000        0.000       

  2   2  3.604      0.000        0.000        0.000       

 

 

Y squared statistic for model fit = 15.255 D.F. = 3 
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Log Linear Analysis for an A x B x C Classification Table 

 

 The three-way classification table can result in a number of linear models to describe the log of 

the observed frequencies as a function of row, column, slice, two-way interactions and the three-

way interaction.  When you select this option you see the dialogue box shown below.  Notice 

that the option is given for entering data directly in the box if preferred. 

 

 

Fig. 7.15   AxBxC Classification Log Linear Dialogue 

 

 The following is the result of an analysis of three categorical variables stored in a file labeled 

"ABCLogLinData.LAZ". 

 
Log-Linear Analysis of a Three Dimension Table 

 

Observed Frequencies 

  1   1   1      6.000 

  1   1   2      9.000 

  1   1   3     12.000 

  1   2   1     15.000 

  1   2   2     12.000 

  1   2   3      9.000 

  2   1   1      6.000 

  2   1   2     15.000 

  2   1   3      6.000 

  2   2   1     15.000 

  2   2   2     18.000 

  2   2   3     24.000 

Totals for Dimension A 

Row 1   63.000 

Row 2   84.000 

Totals for Dimension B 

Col 1   54.000 

Col 2   93.000 

Totals for Dimension C 

Slice 1   42.000 

Slice 2   54.000 

Slice 3   51.000 

 

Sub-matrix AB 

ROW/COL     1         2     

    1     27.000    36.000  

    2     27.000    57.000  

 

Sub-matrix AC 

 

ROW/COL     1         2         3     

    1     21.000    21.000    21.000  
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    2     21.000    33.000    30.000  

 

Sub-matrix BC 

 

ROW/COL     1         2         3     

    1     12.000    24.000    18.000  

    2     30.000    30.000    33.000  

Saturated Model 

 

Expected Frequencies 

  1   1   1      6.000 

  1   1   2      9.000 

  1   1   3     12.000 

  1   2   1     15.000 

  1   2   2     12.000 

  1   2   3      9.000 

  2   1   1      6.000 

  2   1   2     15.000 

  2   1   3      6.000 

  2   2   1     15.000 

  2   2   2     18.000 

  2   2   3     24.000 

Totals for Dimension A 

Row 1   63.000 

Row 2   84.000 

Totals for Dimension B 

Col 1   54.000 

Col 2   93.000 

Totals for Dimension C 

Slice 1   42.000 

Slice 2   54.000 

Slice 3   51.000 

 

Log Frequencies 

  1   1   1      1.792 

  1   1   2      2.197 

  1   1   3      2.485 

  1   2   1      2.708 

  1   2   2      2.485 

  1   2   3      2.197 

  2   1   1      1.792 

  2   1   2      2.708 

  2   1   3      1.792 

  2   2   1      2.708 

  2   2   2      2.890 

  2   2   3      3.178 

Totals for Dimension A 

Row 1    2.311 

Row 2    2.511 

Totals for Dimension B 

Col 1    2.128 

Col 2    2.694 

Totals for Dimension C 

Slice 1    2.250 

Slice 2    2.570 

Slice 3    2.413 

Cell Parameters 

ROW COL SLICE     MU        LAMBDA A     LAMBDA B     LAMBDA C 

               LAMBDA AB    LAMBDA AC    LAMBDA BC    LAMBDA ABC 

 

  1   1   1     2.411       -0.100       -0.283       -0.161     

                0.131        0.100       -0.175       -0.131     

 

  1   1   2     2.411       -0.100       -0.283        0.159     

                0.131       -0.129        0.166       -0.157     

 

  1   1   3     2.411       -0.100       -0.283        0.002     

                0.131        0.028        0.009        0.288     

 

  1   2   1     2.411       -0.100        0.283       -0.161     

               -0.131        0.100        0.175        0.131     

 

  1   2   2     2.411       -0.100        0.283        0.159     

               -0.131       -0.129       -0.166        0.157     
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  1   2   3     2.411       -0.100        0.283        0.002     

               -0.131        0.028       -0.009       -0.288     

 

  2   1   1     2.411        0.100       -0.283       -0.161     

               -0.131       -0.100       -0.175        0.131     

 

  2   1   2     2.411        0.100       -0.283        0.159     

               -0.131        0.129        0.166        0.157     

 

  2   1   3     2.411        0.100       -0.283        0.002     

               -0.131       -0.028        0.009       -0.288     

 

  2   2   1     2.411        0.100        0.283       -0.161     

                0.131       -0.100        0.175       -0.131     

 

  2   2   2     2.411        0.100        0.283        0.159     

                0.131        0.129       -0.166       -0.157     

 

  2   2   3     2.411        0.100        0.283        0.002     

                0.131       -0.028       -0.009        0.288     

 

 

G squared statistic for model fit =  0.000 D.F. = 0 

Model of Independence 

 

Expected Frequencies 

  1   1   1      6.612 

  1   1   2      8.501 

  1   1   3      8.029 

  1   2   1     11.388 

  1   2   2     14.641 

  1   2   3     13.828 

  2   1   1      8.816 

  2   1   2     11.335 

  2   1   3     10.706 

  2   2   1     15.184 

  2   2   2     19.522 

  2   2   3     18.437 

Totals for Dimension A 

Row 1   63.000 

Row 2   84.000 

Totals for Dimension B 

Col 1   54.000 

Col 2   93.000 

Totals for Dimension C 

Slice 1   42.000 

Slice 2   54.000 

Slice 3   51.000 

 

Log Frequencies 

  1   1   1      1.889 

  1   1   2      2.140 

  1   1   3      2.083 

  1   2   1      2.433 

  1   2   2      2.684 

  1   2   3      2.627 

  2   1   1      2.177 

  2   1   2      2.428 

  2   1   3      2.371 

  2   2   1      2.720 

  2   2   2      2.972 

  2   2   3      2.914 

Totals for Dimension A 

Row 1    2.309 

Row 2    2.597 

Totals for Dimension B 

Col 1    2.181 

Col 2    2.725 

Totals for Dimension C 

Slice 1    2.305 

Slice 2    2.556 

Slice 3    2.499 

Cell Parameters 
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ROW COL SLICE     MU        LAMBDA A     LAMBDA B     LAMBDA C 

               LAMBDA AB    LAMBDA AC    LAMBDA BC    LAMBDA ABC 

 

  1   1   1     2.453       -0.144       -0.272       -0.148     

                0.000        0.000        0.000       -0.000     

 

  1   1   2     2.453       -0.144       -0.272        0.103     

                0.000       -0.000        0.000        0.000     

 

  1   1   3     2.453       -0.144       -0.272        0.046     

                0.000        0.000        0.000        0.000     

 

  1   2   1     2.453       -0.144        0.272       -0.148     

                0.000        0.000        0.000        0.000     

 

  1   2   2     2.453       -0.144        0.272        0.103     

                0.000       -0.000       -0.000        0.000     

 

  1   2   3     2.453       -0.144        0.272        0.046     

                0.000        0.000       -0.000        0.000     

 

  2   1   1     2.453        0.144       -0.272       -0.148     

                0.000        0.000        0.000       -0.000     

 

  2   1   2     2.453        0.144       -0.272        0.103     

                0.000       -0.000        0.000        0.000     

 

  2   1   3     2.453        0.144       -0.272        0.046     

                0.000        0.000        0.000       -0.000     

 

  2   2   1     2.453        0.144        0.272       -0.148     

               -0.000        0.000        0.000        0.000     

 

  2   2   2     2.453        0.144        0.272        0.103     

               -0.000       -0.000       -0.000        0.000     

 

  2   2   3     2.453        0.144        0.272        0.046     

               -0.000        0.000       -0.000        0.000     

 

 

G squared statistic for model fit = 11.471 D.F. = 7 

No AB Effect 

 

Expected Frequencies 

  1   1   1      6.000 

  1   1   2      9.333 

  1   1   3      7.412 

  1   2   1     15.000 

  1   2   2     11.667 

  1   2   3     13.588 

  2   1   1      6.000 

  2   1   2     14.667 

  2   1   3     10.588 

  2   2   1     15.000 

  2   2   2     18.333 

  2   2   3     19.412 

Totals for Dimension A 

Row 1   63.000 

Row 2   84.000 

Totals for Dimension B 

Col 1   54.000 

Col 2   93.000 

Totals for Dimension C 

Slice 1   42.000 

Slice 2   54.000 

Slice 3   51.000 

 

Log Frequencies 

  1   1   1      1.792 

  1   1   2      2.234 

  1   1   3      2.003 

  1   2   1      2.708 

  1   2   2      2.457 

  1   2   3      2.609 
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  2   1   1      1.792 

  2   1   2      2.686 

  2   1   3      2.360 

  2   2   1      2.708 

  2   2   2      2.909 

  2   2   3      2.966 

Totals for Dimension A 

Row 1    2.300 

Row 2    2.570 

Totals for Dimension B 

Col 1    2.144 

Col 2    2.726 

Totals for Dimension C 

Slice 1    2.250 

Slice 2    2.571 

Slice 3    2.484 

Cell Parameters 

ROW COL SLICE     MU        LAMBDA A     LAMBDA B     LAMBDA C 

               LAMBDA AB    LAMBDA AC    LAMBDA BC    LAMBDA ABC 

 

  1   1   1     2.435       -0.135       -0.291       -0.185     

                0.000        0.135       -0.167        0.000     

 

  1   1   2     2.435       -0.135       -0.291        0.136     

                0.000       -0.091        0.179        0.000     

 

  1   1   3     2.435       -0.135       -0.291        0.049     

                0.000       -0.044       -0.012        0.000     

 

  1   2   1     2.435       -0.135        0.291       -0.185     

                0.000        0.135        0.167        0.000     

 

  1   2   2     2.435       -0.135        0.291        0.136     

                0.000       -0.091       -0.179        0.000     

 

  1   2   3     2.435       -0.135        0.291        0.049     

                0.000       -0.044        0.012        0.000     

 

  2   1   1     2.435        0.135       -0.291       -0.185     

                0.000       -0.135       -0.167       -0.000     

 

  2   1   2     2.435        0.135       -0.291        0.136     

                0.000        0.091        0.179       -0.000     

 

  2   1   3     2.435        0.135       -0.291        0.049     

                0.000        0.044       -0.012       -0.000     

 

  2   2   1     2.435        0.135        0.291       -0.185     

                0.000       -0.135        0.167        0.000     

 

  2   2   2     2.435        0.135        0.291        0.136     

                0.000        0.091       -0.179        0.000     

 

  2   2   3     2.435        0.135        0.291        0.049     

                0.000        0.044        0.012        0.000     

 

 

G squared statistic for model fit =  7.552 D.F. = 3 

No AC Effect 

 

Expected Frequencies 

  1   1   1      6.000 

  1   1   2     12.000 

  1   1   3      9.000 

  1   2   1     11.613 

  1   2   2     11.613 

  1   2   3     12.774 

  2   1   1      6.000 

  2   1   2     12.000 

  2   1   3      9.000 

  2   2   1     18.387 

  2   2   2     18.387 

  2   2   3     20.226 

Totals for Dimension A 
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Row 1   63.000 

Row 2   84.000 

Totals for Dimension B 

Col 1   54.000 

Col 2   93.000 

Totals for Dimension C 

Slice 1   42.000 

Slice 2   54.000 

Slice 3   51.000 

 

Log Frequencies 

  1   1   1      1.792 

  1   1   2      2.485 

  1   1   3      2.197 

  1   2   1      2.452 

  1   2   2      2.452 

  1   2   3      2.547 

  2   1   1      1.792 

  2   1   2      2.485 

  2   1   3      2.197 

  2   2   1      2.912 

  2   2   2      2.912 

  2   2   3      3.007 

Totals for Dimension A 

Row 1    2.321 

Row 2    2.551 

Totals for Dimension B 

Col 1    2.158 

Col 2    2.714 

Totals for Dimension C 

Slice 1    2.237 

Slice 2    2.583 

Slice 3    2.487 

Cell Parameters 

ROW COL SLICE     MU        LAMBDA A     LAMBDA B     LAMBDA C 

               LAMBDA AB    LAMBDA AC    LAMBDA BC    LAMBDA ABC 

 

  1   1   1     2.436       -0.115       -0.278       -0.199     

                0.115        0.000       -0.167        0.000     

 

  1   1   2     2.436       -0.115       -0.278        0.148     

                0.115        0.000        0.179        0.000     

 

  1   1   3     2.436       -0.115       -0.278        0.051     

                0.115       -0.000       -0.012        0.000     

 

  1   2   1     2.436       -0.115        0.278       -0.199     

               -0.115        0.000        0.167        0.000     

 

  1   2   2     2.436       -0.115        0.278        0.148     

               -0.115        0.000       -0.179        0.000     

 

  1   2   3     2.436       -0.115        0.278        0.051     

               -0.115       -0.000        0.012        0.000     

 

  2   1   1     2.436        0.115       -0.278       -0.199     

               -0.115        0.000       -0.167       -0.000     

 

  2   1   2     2.436        0.115       -0.278        0.148     

               -0.115        0.000        0.179       -0.000     

 

  2   1   3     2.436        0.115       -0.278        0.051     

               -0.115        0.000       -0.012       -0.000     

 

  2   2   1     2.436        0.115        0.278       -0.199     

                0.115        0.000        0.167       -0.000     

 

  2   2   2     2.436        0.115        0.278        0.148     

                0.115        0.000       -0.179       -0.000     

 

  2   2   3     2.436        0.115        0.278        0.051     

                0.115        0.000        0.012       -0.000     
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G squared statistic for model fit =  7.055 D.F. = 4 

No BC Effect 

 

Expected Frequencies 

  1   1   1      9.000 

  1   1   2      9.000 

  1   1   3      9.000 

  1   2   1     12.000 

  1   2   2     12.000 

  1   2   3     12.000 

  2   1   1      6.750 

  2   1   2     10.607 

  2   1   3      9.643 

  2   2   1     14.250 

  2   2   2     22.393 

  2   2   3     20.357 

Totals for Dimension A 

Row 1   63.000 

Row 2   84.000 

Totals for Dimension B 

Col 1   54.000 

Col 2   93.000 

Totals for Dimension C 

Slice 1   42.000 

Slice 2   54.000 

Slice 3   51.000 

 

Log Frequencies 

  1   1   1      2.197 

  1   1   2      2.197 

  1   1   3      2.197 

  1   2   1      2.485 

  1   2   2      2.485 

  1   2   3      2.485 

  2   1   1      1.910 

  2   1   2      2.362 

  2   1   3      2.266 

  2   2   1      2.657 

  2   2   2      3.109 

  2   2   3      3.013 

Totals for Dimension A 

Row 1    2.341 

Row 2    2.553 

Totals for Dimension B 

Col 1    2.188 

Col 2    2.706 

Totals for Dimension C 

Slice 1    2.312 

Slice 2    2.538 

Slice 3    2.490 

Cell Parameters 

ROW COL SLICE     MU        LAMBDA A     LAMBDA B     LAMBDA C 

               LAMBDA AB    LAMBDA AC    LAMBDA BC    LAMBDA ABC 

 

  1   1   1     2.447       -0.106       -0.259       -0.135     

                0.115        0.135        0.000       -0.000     

 

  1   1   2     2.447       -0.106       -0.259        0.091     

                0.115       -0.091        0.000       -0.000     

 

  1   1   3     2.447       -0.106       -0.259        0.044     

                0.115       -0.044       -0.000        0.000     

 

  1   2   1     2.447       -0.106        0.259       -0.135     

               -0.115        0.135       -0.000        0.000     

 

  1   2   2     2.447       -0.106        0.259        0.091     

               -0.115       -0.091       -0.000        0.000     

 

  1   2   3     2.447       -0.106        0.259        0.044     

               -0.115       -0.044       -0.000        0.000     

 

  2   1   1     2.447        0.106       -0.259       -0.135     

               -0.115       -0.135        0.000        0.000     
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  2   1   2     2.447        0.106       -0.259        0.091     

               -0.115        0.091        0.000        0.000     

 

  2   1   3     2.447        0.106       -0.259        0.044     

               -0.115        0.044       -0.000        0.000     

 

  2   2   1     2.447        0.106        0.259       -0.135     

                0.115       -0.135       -0.000        0.000     

 

  2   2   2     2.447        0.106        0.259        0.091     

                0.115        0.091       -0.000        0.000     

 

  2   2   3     2.447        0.106        0.259        0.044     

                0.115        0.044       -0.000        0.000     

 

 

G squared statistic for model fit =  8.423 D.F. = 4 

Model of No Slice (C) effect 

 

Expected Frequencies 

  1   1   1      7.714 

  1   1   2      7.714 

  1   1   3      7.714 

  1   2   1     13.286 

  1   2   2     13.286 

  1   2   3     13.286 

  2   1   1     10.286 

  2   1   2     10.286 

  2   1   3     10.286 

  2   2   1     17.714 

  2   2   2     17.714 

  2   2   3     17.714 

Totals for Dimension A 

Row 1   63.000 

Row 2   84.000 

Totals for Dimension B 

Col 1   54.000 

Col 2   93.000 

Totals for Dimension C 

Slice 1   49.000 

Slice 2   49.000 

Slice 3   49.000 

 

Log Frequencies 

  1   1   1      2.043 

  1   1   2      2.043 

  1   1   3      2.043 

  1   2   1      2.587 

  1   2   2      2.587 

  1   2   3      2.587 

  2   1   1      2.331 

  2   1   2      2.331 

  2   1   3      2.331 

  2   2   1      2.874 

  2   2   2      2.874 

  2   2   3      2.874 

Totals for Dimension A 

Row 1    2.315 

Row 2    2.603 

Totals for Dimension B 

Col 1    2.187 

Col 2    2.731 

Totals for Dimension C 

Slice 1    2.459 

Slice 2    2.459 

Slice 3    2.459 

Cell Parameters 

ROW COL SLICE     MU        LAMBDA A     LAMBDA B     LAMBDA C 

               LAMBDA AB    LAMBDA AC    LAMBDA BC    LAMBDA ABC 

 

  1   1   1     2.459       -0.144       -0.272        0.000     

                0.000        0.000        0.000       -0.000     
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  1   1   2     2.459       -0.144       -0.272        0.000     

                0.000        0.000        0.000       -0.000     

 

  1   1   3     2.459       -0.144       -0.272        0.000     

                0.000        0.000        0.000       -0.000     

 

  1   2   1     2.459       -0.144        0.272        0.000     

                0.000        0.000        0.000        0.000     

 

  1   2   2     2.459       -0.144        0.272        0.000     

                0.000        0.000        0.000        0.000     

 

  1   2   3     2.459       -0.144        0.272        0.000     

                0.000        0.000        0.000        0.000     

 

  2   1   1     2.459        0.144       -0.272        0.000     

                0.000        0.000        0.000       -0.000     

 

  2   1   2     2.459        0.144       -0.272        0.000     

                0.000        0.000        0.000       -0.000     

 

  2   1   3     2.459        0.144       -0.272        0.000     

                0.000        0.000        0.000       -0.000     

 

  2   2   1     2.459        0.144        0.272        0.000     

               -0.000        0.000        0.000        0.000     

 

  2   2   2     2.459        0.144        0.272        0.000     

               -0.000        0.000        0.000        0.000     

 

  2   2   3     2.459        0.144        0.272        0.000     

               -0.000        0.000        0.000        0.000     

 

 

G squared statistic for model fit = 13.097 D.F. = 9 

Model of no Column (B) effect 

 

Expected Frequencies 

  1   1   1      9.000 

  1   1   2     11.571 

  1   1   3     10.929 

  1   2   1      9.000 

  1   2   2     11.571 

  1   2   3     10.929 

  2   1   1     12.000 

  2   1   2     15.429 

  2   1   3     14.571 

  2   2   1     12.000 

  2   2   2     15.429 

  2   2   3     14.571 

Totals for Dimension A 

Row 1   63.000 

Row 2   84.000 

Totals for Dimension B 

Col 1   73.500 

Col 2   73.500 

Totals for Dimension C 

Slice 1   42.000 

Slice 2   54.000 

Slice 3   51.000 

 

Log Frequencies 

  1   1   1      2.197 

  1   1   2      2.449 

  1   1   3      2.391 

  1   2   1      2.197 

  1   2   2      2.449 

  1   2   3      2.391 

  2   1   1      2.485 

  2   1   2      2.736 

  2   1   3      2.679 

  2   2   1      2.485 

  2   2   2      2.736 

  2   2   3      2.679 
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Totals for Dimension A 

Row 1    2.346 

Row 2    2.633 

Totals for Dimension B 

Col 1    2.490 

Col 2    2.490 

Totals for Dimension C 

Slice 1    2.341 

Slice 2    2.592 

Slice 3    2.535 

Cell Parameters 

ROW COL SLICE     MU        LAMBDA A     LAMBDA B     LAMBDA C 

               LAMBDA AB    LAMBDA AC    LAMBDA BC    LAMBDA ABC 

 

  1   1   1     2.490       -0.144       -0.000       -0.148     

                0.000        0.000        0.000       -0.000     

 

  1   1   2     2.490       -0.144       -0.000        0.103     

                0.000        0.000        0.000       -0.000     

 

  1   1   3     2.490       -0.144       -0.000        0.046     

                0.000        0.000        0.000       -0.000     

 

  1   2   1     2.490       -0.144       -0.000       -0.148     

                0.000        0.000        0.000       -0.000     

 

  1   2   2     2.490       -0.144       -0.000        0.103     

                0.000        0.000        0.000       -0.000     

 

  1   2   3     2.490       -0.144       -0.000        0.046     

                0.000        0.000        0.000       -0.000     

 

  2   1   1     2.490        0.144       -0.000       -0.148     

                0.000        0.000        0.000       -0.000     

 

  2   1   2     2.490        0.144       -0.000        0.103     

                0.000        0.000        0.000       -0.000     

 

  2   1   3     2.490        0.144       -0.000        0.046     

                0.000        0.000        0.000       -0.000     

 

  2   2   1     2.490        0.144       -0.000       -0.148     

                0.000        0.000        0.000       -0.000     

 

  2   2   2     2.490        0.144       -0.000        0.103     

                0.000        0.000        0.000       -0.000     

 

  2   2   3     2.490        0.144       -0.000        0.046     

                0.000        0.000        0.000       -0.000     

 

 

G squared statistic for model fit = 21.943 D.F. = 8 

Model of no Row (A) effect 

 

Expected Frequencies 

  1   1   1      7.714 

  1   1   2      9.918 

  1   1   3      9.367 

  1   2   1     13.286 

  1   2   2     17.082 

  1   2   3     16.133 

  2   1   1      7.714 

  2   1   2      9.918 

  2   1   3      9.367 

  2   2   1     13.286 

  2   2   2     17.082 

  2   2   3     16.133 

Totals for Dimension A 

Row 1   73.500 

Row 2   73.500 

Totals for Dimension B 

Col 1   54.000 

Col 2   93.000 

Totals for Dimension C 
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Slice 1   42.000 

Slice 2   54.000 

Slice 3   51.000 

 

Log Frequencies 

  1   1   1      2.043 

  1   1   2      2.294 

  1   1   3      2.237 

  1   2   1      2.587 

  1   2   2      2.838 

  1   2   3      2.781 

  2   1   1      2.043 

  2   1   2      2.294 

  2   1   3      2.237 

  2   2   1      2.587 

  2   2   2      2.838 

  2   2   3      2.781 

Totals for Dimension A 

Row 1    2.463 

Row 2    2.463 

Totals for Dimension B 

Col 1    2.192 

Col 2    2.735 

Totals for Dimension C 

Slice 1    2.315 

Slice 2    2.566 

Slice 3    2.509 

Cell Parameters 

ROW COL SLICE     MU        LAMBDA A     LAMBDA B     LAMBDA C 

               LAMBDA AB    LAMBDA AC    LAMBDA BC    LAMBDA ABC 

 

  1   1   1     2.463        0.000       -0.272       -0.148     

                0.000       -0.000        0.000        0.000     

 

  1   1   2     2.463        0.000       -0.272        0.103     

                0.000       -0.000        0.000        0.000     

 

  1   1   3     2.463        0.000       -0.272        0.046     

                0.000       -0.000        0.000        0.000     

 

  1   2   1     2.463        0.000        0.272       -0.148     

               -0.000       -0.000        0.000        0.000     

 

  1   2   2     2.463        0.000        0.272        0.103     

               -0.000       -0.000        0.000        0.000     

 

  1   2   3     2.463        0.000        0.272        0.046     

               -0.000       -0.000        0.000        0.000     

 

  2   1   1     2.463        0.000       -0.272       -0.148     

                0.000       -0.000        0.000        0.000     

 

  2   1   2     2.463        0.000       -0.272        0.103     

                0.000       -0.000        0.000        0.000     

 

  2   1   3     2.463        0.000       -0.272        0.046     

                0.000       -0.000        0.000        0.000     

 

  2   2   1     2.463        0.000        0.272       -0.148     

               -0.000       -0.000        0.000        0.000     

 

  2   2   2     2.463        0.000        0.272        0.103     

               -0.000       -0.000        0.000        0.000     

 

  2   2   3     2.463        0.000        0.272        0.046     

               -0.000       -0.000        0.000        0.000     

 

 

G squared statistic for model fit = 14.481 D.F. = 8 

Equi-probability Model 

 

Expected Frequencies 

  1   1   1     12.250 

  1   1   2     12.250 
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  1   1   3     12.250 

  1   2   1     12.250 

  1   2   2     12.250 

  1   2   3     12.250 

  2   1   1     12.250 

  2   1   2     12.250 

  2   1   3     12.250 

  2   2   1     12.250 

  2   2   2     12.250 

  2   2   3     12.250 

Totals for Dimension A 

Row 1   73.500 

Row 2   73.500 

Totals for Dimension B 

Col 1   73.500 

Col 2   73.500 

Totals for Dimension C 

Slice 1   49.000 

Slice 2   49.000 

Slice 3   49.000 

 

Log Frequencies 

  1   1   1      2.506 

  1   1   2      2.506 

  1   1   3      2.506 

  1   2   1      2.506 

  1   2   2      2.506 

  1   2   3      2.506 

  2   1   1      2.506 

  2   1   2      2.506 

  2   1   3      2.506 

  2   2   1      2.506 

  2   2   2      2.506 

  2   2   3      2.506 

Totals for Dimension A 

Row 1    2.506 

Row 2    2.506 

Totals for Dimension B 

Col 1    2.506 

Col 2    2.506 

Totals for Dimension C 

Slice 1    2.506 

Slice 2    2.506 

Slice 3    2.506 

Cell Parameters 

ROW COL SLICE     MU        LAMBDA A     LAMBDA B     LAMBDA C 

               LAMBDA AB    LAMBDA AC    LAMBDA BC    LAMBDA ABC 

 

  1   1   1     2.506        0.000        0.000        0.000     

                0.000        0.000        0.000        0.000     

 

  1   1   2     2.506        0.000        0.000        0.000     

                0.000        0.000        0.000        0.000     

 

  1   1   3     2.506        0.000        0.000        0.000     

                0.000        0.000        0.000        0.000     

 

  1   2   1     2.506        0.000        0.000        0.000     

                0.000        0.000        0.000        0.000     

 

  1   2   2     2.506        0.000        0.000        0.000     

                0.000        0.000        0.000        0.000     

 

  1   2   3     2.506        0.000        0.000        0.000     

                0.000        0.000        0.000        0.000     

 

  2   1   1     2.506        0.000        0.000        0.000     

                0.000        0.000        0.000        0.000     

 

  2   1   2     2.506        0.000        0.000        0.000     

                0.000        0.000        0.000        0.000     

 

  2   1   3     2.506        0.000        0.000        0.000     

                0.000        0.000        0.000        0.000     
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  2   2   1     2.506        0.000        0.000        0.000     

                0.000        0.000        0.000        0.000     

 

  2   2   2     2.506        0.000        0.000        0.000     

                0.000        0.000        0.000        0.000     

 

  2   2   3     2.506        0.000        0.000        0.000     

                0.000        0.000        0.000        0.000     

 

 

G squared statistic for model fit = 26.579 D.F. = 11 

 

Log Linear Screen 

 

 A large number of possible parameters may be tested by the log linear procedures.  It is not 

uncommon to complete an initial screening of the data for an analysis.  In particular, an 

investigator may want to consider one of the variables as having "fixed" marginal values while 

the other margins are free to vary.  These marginal associations can be tested by this procedure.  

 

 

Fig. 7.15   Log Linear Screening Dialogue 

 

Shown below are the results of the screen for a three-way classification table. 

 
FILE: C:\lazarus\Projects\LazStats\LazStatsData\ABCLogLinData.LAZ 

 

 

Marginal Totals for Row 

 

       1        2  

      63       84  

 

Marginal Totals for Col 

 

       1        2  

      54       93  

 

Marginal Totals for Slice 

 

       1        2        3  

      42       54       51  

 

Total Frequencies = 147 

 

EXPECTED CELL VALUES FOR MODEL OF COMPLETE INDEPENDENCE 



Statistics and Measurement Concepts for LazStats   William G. Miller ©2012 

 

 305 

 

Cell          Observed  Expected  Log Expected 

  1   1   1          6       6.61      1.889 

  2   1   1          6       8.82      2.177 

  1   2   1         15      11.39      2.433 

  2   2   1         15      15.18      2.720 

  1   1   2          9       8.50      2.140 

  2   1   2         15      11.34      2.428 

  1   2   2         12      14.64      2.684 

  2   2   2         18      19.52      2.972 

  1   1   3         12       8.03      2.083 

  2   1   3          6      10.71      2.371 

  1   2   3          9      13.83      2.627 

  2   2   3         24      18.44      2.914 

Chisquare =     11.310 with probability =      0.004 (DF = 2) 

G squared =     11.471 with probability =      0.003 (DF = 2) 

 

U (mu) for general loglinear model =       2.45 

First Order LogLinear Model Factors and N of Cells in Each 

CELL               U1  N Cells    U2  N Cells    U3  N Cells    

 

  1   1   1     -0.144   6     -0.272   6     -0.148   4  

  2   1   1      0.144   6     -0.272   6     -0.148   4  

  1   2   1     -0.144   6      0.272   6     -0.148   4  

  2   2   1      0.144   6      0.272   6     -0.148   4  

  1   1   2     -0.144   6     -0.272   6      0.103   4  

  2   1   2      0.144   6     -0.272   6      0.103   4  

  1   2   2     -0.144   6      0.272   6      0.103   4  

  2   2   2      0.144   6      0.272   6      0.103   4  

  1   1   3     -0.144   6     -0.272   6      0.046   4  

  2   1   3      0.144   6     -0.272   6      0.046   4  

  1   2   3     -0.144   6      0.272   6      0.046   4  

  2   2   3      0.144   6      0.272   6      0.046   4 

Second Order Loglinear Model Terms and N of Cells in Each 

CELL              U12  N Cells  U13  N Cells  U23  N Cells   

 

  1   1   1     -0.416   3    -0.292   2    -0.420   2 

  2   1   1     -0.128   3    -0.005   2    -0.420   2 

  1   2   1      0.128   3    -0.292   2     0.123   2 

  2   2   1      0.416   3    -0.005   2     0.123   2 

  1   1   2     -0.416   3    -0.041   2    -0.169   2 

  2   1   2     -0.128   3     0.247   2    -0.169   2 

  1   2   2      0.128   3    -0.041   2     0.375   2 

  2   2   2      0.416   3     0.247   2     0.375   2 

  1   1   3     -0.416   3    -0.098   2    -0.226   2 

  2   1   3     -0.128   3     0.190   2    -0.226   2 

  1   2   3      0.128   3    -0.098   2     0.317   2 

  2   2   3      0.416   3     0.190   2     0.317   2 

SCREEN FOR INTERACTIONS AMONG THE VARIABLES 

Adapted from the Fortran program by Lustbader and Stodola printed in 

Applied Statistics, Volume 30, Issue 1, 1981, pages 97-105 as Algorithm 

AS 160 Partial and Marginal Association in Multidimensional Contingency Tables 

 

Statistics for tests that the interactions of a given order are zero 

ORDER     STATISTIC    D.F.         PROB. 

    1         15.108        4       0.004 

    2          6.143        5       0.293 

    3          5.328        2       0.070 

 

Statistics for Marginal Association Tests 

VARIABLE  ASSOC.  PART ASSOC. MARGINAL ASSOC. D.F.    PROB 

    1         1         3.010       3.010    1        0.083 

    1         2        10.472      10.472    1        0.001 

    1         3         1.626       1.626    2        0.444 

    2         1         2.224       1.773    1        0.183 

    2         2         1.726       1.275    2        0.529 

    2         3         3.095       2.644    2        0.267 
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Chapter 8. Non-Parametric Statistics 
 

 Beginning statistics students are usually introduced to what are called "parametric" statistics methods.  

Those methods utilize "models" of score distributions such as the normal (Gaussian) distribution, Poisson 

distribution, binomial distribution, etc.  The emphasis in parametric statistical methods is estimating population 

parameters from sample statistics when the distribution of the population scores can be assumed to be one of these 

theoretical models.  The observations made are also assumed to be based on continous variables that utilize an 

interval or ratio scale of measurement.  Frequently the measurement scales available yield only nominal or ordinal 

values and nothing can be assumed about the distribution of such values in the population sampled.  If however, 

random sampling has been utilized in selecting subjects, one can still make inferences about relationships and 

differences similar to those made with parametric statistics.  For example, if students enrolled in two courses are 

assigned a rank on their achievement in each of the two courses, it is reasonable to expect that students that rank 

high in one course would tend to rank high in the other course.  Since a rank only indicates order however and not 

"how much" was achieved, we cannot use the usual product-moment correlation to indicate the relationship between 

the ranks.  We can estimate, however, what the product of rank values in a group of n subjects where the ranks are 

randomly assigned would tend to be and estimate the variability of these sums or rank products for repeated 

samples.  This would lead to a test of significance of the departure of our rank product sum (or average) from a 

value expected when there is no relationship. 

 

 A variety of non-parametric methods have been developed for nominal and ordinal measures to indicate 

congruence or similarity among independent groups or repeated measures on subjects in a group.  

 

Contingency Chi-Square 

 

 The frequency chi-square statistic is used to accept or reject hypotheses concerning the degree to which 

observed frequencies depart from theoretical frequencies in a row by column contingency table with fixed marginal 

frequencies.  It therefore tests the independence of the categorical variables defining the rows and columns.  As an 

example, assume 50 males and 50 females are randomly assigned to each of three types of instructional methods to 

learn beginning French, (a) using a language laboratory, (b) using a computer with voice synthesizer and (c) using 

an advanced student tutor.  Following a treatment period, a test is administered to each student with scoring results 

being pass or fail.  The frequency of passing is then recorded for each cell in the 2 by 3 array (gender by treatment).  

If gender is independent of the treatment variable, the expected frequency of males that pass in each treatment would 

be the same as the expected frequency for females.  The chi-squared statistic is obtained as 

 

              row col 

     Σ   Σ  (fij - Fij)
2  

      i=1 j=1  

 χ
2
   =      -----------------------      (8.1) 

    Fij 

    

where fij is the observed frequency, Fij the expected frequency, and  χ2  is the chi-squared statistic with degrees of 

freedom (rows - 1) times (columns - 1). 
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Spearman Rank Correlation 

 

 When the researcher’s data represent ordinal measures such as ranks with some observations being tied for 

the same rank, the Rank Correlation may be the appropriate statistic to calculate.  While the computation for the case 

of untied cases is the same as that for the Pearson Product-Moment correlation, the correction for tied ranks is found 

only in the Spearman correlation.  In addition, the interpretation of the significance of the Rank Correlation may 

differ from that of the Pearson Correlation where bivariate normalcy is assumed. 

 

Mann-Whitney U Test 

 

 An alternative to the Student t-test when the scale of measurement cannot be assumed to be interval or ratio 

and the distribution of errors is unknown is a non-parametric test known as the Mann-Whitney test.  In this test, the 

dependent variable scores for both groups are ranked and the number of times that one groups scores exceed the 

rank of scores in the other group are recorded.  This total number of times scores in one group exceed those of the 

other is named U.  The sampling distribution of U is known and forms the basis for the hypothesis that the scores 

come from the same population. 

 

Fisher’s Exact Test 

The probability of any given pattern of responses in a 2 by 2 table may be calculated from the hypergeometric 

probability distribution as 

 

    (A+B)!(C+D)!(A+C)!(B+D)! 

   P =  --------------------------------------   (8.2) 

           N!A!B!C!D! 

 

where A, B, C, and D correspond to the frequencies in the four quadrants of the table and N corresponds to the total 

number of individuals sampled. 

 

Kendall’s Coefficient of Concordance 

 

 It is not uncommon that a group of people are asked to judge a group of persons or objects by rank ordering 

them from highest to lowest.  It is then desirable to have some index of the degree to which the various judges 

agreed, that is, ranked the objects in the same order.  The Coefficient of Concordance is a measure varying between 

0 and 1 that indicates the degree of agreement among judges.  It is defined as: 

 

 W = Variance of rank sums / maximum variance of rank sums. 

 

The coefficient W may also be used to obtain the average rank correlation among the judges by the formula: 

 

  Mr = (mW - 1) / (m - 1)      (8.3) 

 

 where Mr is the average (Spearman) rank correlation, m is the number of judges and W is the Coefficient of 

Concordance. 
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Kruskal-Wallis One-Way ANOVA 

 

 One-Way, Fixed-Effects Analysis of Variance assumes that error (residual) scores are normally distributed, 

that subjects are randomly selected from the population and assigned to treatments, and that the error scores are 

equally distributed in the populations representing the treatments.  The scale of measurement for the dependent 

variable is assumed to be interval or ratio.  But what can you do if, in fact, your measure is only ordinal (for example 

like most classroom tests), and you cannot assume normally distributed, homoscedastic error distributions? 

 

 Why, of course, you convert the scores to ranks and ask if the sum of rank scores in each treatment group 

are the same within sampling error!  The Kruskal-Wallis One-Way Analysis of variance converts the dependent 

score for each subject in the study to a rank from 1 to N.  It then examines the ranks attained by subjects in each of 

the treatment groups.  Then a test statistic which is distributed as Chi-Squared with degrees of freedom equal to the 

number of treatment groups minus one is obtained from: 

 

12 K 

  H =  ----------     Rj
2 / nj - 3(N + 1)    (8.4) 

          N(N + 1)  j=1 

 

where N is the total number of subjects in the experiment, nj is the number of subjects in the jth treatment, K is the 

number of treatments and Rj is the sum of ranks in the jth treatment. 

 

Wilcoxon Matched-Pairs Signed Ranks Test 

 

 This test provides an alternative to the student t-test for matched score data where the assumptions for the 

parametric t-test cannot be met.  In using this test, the difference is obtained between each of N pairs of scores 

observed on matched objects, for example, the difference between pretest and post-test scores for a group of 

students.  The difference scores obtained are then ranked.  The ranks of negative score differences are summed and 

the ranks of positive score differences are summed.  The test statistic T is the smaller of these two sums.  Difference 

scores of 0 are eliminated since a rank cannot be assigned.  If the null hypothesis of no difference between the 

groups of scores is true, the sum of positive ranks should not differ from the sum of negative ranks beyond that 

expected by chance.  Given N ranks, there is a finite number of ways of obtaining a given sum T.  There are a total 

of 2 raised to the N ways of assigning positive and negative differences to N ranks.  In a sample of 5 pairs, for 

example, there are 2 to the fifth power = 32 ways.  Each rank sign would occur with probability of 1/32.  The 

probability of getting a particular total T is 

 

   Ways of getting T 

  PT = -----------------------      (8.5) 

          2N 

 

The cumulative probabilities for T, T-1,....,0 are obtained for the observed T value and reported.  For large samples, 

a normally distributed z score is approximated and used. 

 

Cochran Q Test 

 

 The Cochran Q test is used to test whether or not two or more matched sets of frequencies or proportions, 

measured on a nominal or ordinal scale, differ significantly among themselves.  Typically, observations are 

dichotomous, that is, scored as 0 or 1 depending on whether or not the subject falls into one or the other criterion 

group.  An example of research for which the Q test may be applied might be the agreement or disagreement to the 

question "Should abortions be legal?".  The research design might call for a sample of n subjects answering the 

question prior to a debate and following a debate on the topic and subsequently six months later.  The Q test applied 

to these data would test whether or not the proportion agreeing was the same under these three time periods.  The Q 

statistic is obtained as 
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                                                        K             K 

   (K - 1)  Σ Gj
2 - ( Σ  Gj )

2 

              j=1           j=1 

  Q =  ----------------------------------     (8.6) 

                                                n          n 

   K  Σ Li -  Σ Li
2 

                                              i=1       i=1 

 

  where K is the number of treatments (groups of scores, Gj is the sum with the jth treatment group, 

and Li is the sum within case i (across groups).  The Q statistic is distributed approximately as Chi-squared with 

degrees of freedom K-1.  If Q exceeds the Chi-Squared value corresponding to the cumulative probability value, the 

hypothesis of equal proportions for the K groups is rejected. 

 

Sign Test 

 

 Imagine a counseling psychologist who sees, over a period of months, a number of clients with personal 

problems.  Suppose the psychologist routinely contacts each client for a six month followup to see how they are 

doing. The counselor could make an estimate of client "adjustment" before treatment and at the followup time (or 

better still, have another person independently estimate adjustment at these two time periods).  We may assume 

some underlying continuous "adjustment" variable even though we have no idea about the population distribution of 

the variable.  We are intrested in knowing, of course, whether or not people are better adjusted six months after 

therapy than before.  Note that we are only comparing the "before" and "after" state of the individuals with each 

other, not with other subjects.  If we assign a + to the situation of improved adjustment and a - to the situation of 

same or poorer adjustment, we have the data required for a Sign Test.  If treatment has had no effect, we would 

expect approximately one half the subjects would receive plus signs and the others negative signs.  The sampling 

distribution of the proportion of plus signs is given by the binomial probability distribution with parameter of .5 and 

the number of events equal to n, the number of pairs of observations. 

 

Friedman Two Way ANOVA 

 

 Imagine an experiment using, say, ten groups of subjects with four subjects in each group that have been 

matched on some relevant variables (or even using the same subjects).  The matched subjects in each group are 

exposed to four different treatments such as teaching methods, dosages of medicine, proportion of positive responses 

to statements or questions, etc.  Assume that some criterion measure on at least a nominal scale is available to 

measure the effect of each treatment.  Now rank the subjects in each group on the basis of their scores on the 

criterion.  We may now ask whether the ranks in each treatment come from the same population.  Had we been able 

to assume an interval or ratio measure and normally distributed errors, we might have used a repeated measures 

analysis of variance.  Failing to meet the parametric test assumptions, we instead examine the sum of ranks obtained 

under each of the treatment conditions and ask whether they differ significantly.  The test statistic is distributed as 

Chi-squared with degrees of freedom equal to the number of treatments minus one.  It is obtained as where N is the 

number of groups, K the number of treatments (or number of subjects in each group), and Rj is the sum of ranks in 

each treatment.   

 

Probability of a Binomial Event 

 

 The BINOMIAL program is a short program to calculate the probability of obtaining k or fewer 

occurrences of a dichotomous variable out of a total of n observations when the probability of an occurrence is 

known.  For example, assume a test consists of 5 multiple choice items with each item scored correct or incorrect.  

Also assume that there are five equally plausible choices for a student with no knowledge concerning any item.  In 

this case, the probability of a student guessing the correct answer to a single item is 1/5 or .20 .  We may use the 
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binomial program to obtain the probabilities that a student guessing on each item of the test gets a score of 0, 1, 2, 3, 

4, or 5 items correct by chance alone. 

 

 The formula for the probability of a dichotomous event k where the probability of a single event is p (and 

the probability of a non-event is q = 1 - p is given as: 

 

                             N!             

 P(k) = ------------- p
(N-k)

   q
k      

(8.7) 

                         (N - k)! k! 

 

For example, if a “fair” coin is tossed three times with the probabilities of heads is p = .5 (and q = .5) then the 

probabilty of observing 2 heads is 

 

                               3! 

 P(2) = ------------0.5
1
 x 0.5

2
 

                         (3-2)! 2! 

 

                          3 x 2 x 1 

                     = -------------- x 0.5 x 0.25   

                         1 x (2 x 1) 

 

                            6 

                    = --------- x 0.125   =   .375 

                            2 

 

Similarly, the probability of getting one toss turn up heads is 

 

                                  3!                                6 

 P(1) =  ------------ 0.5
2
 x 0.5 =  ----------- x 0.25 x 0.5 = .375 

                           (3-1)! 1!                             2 

 

and the probability of getting zero heads turn up in three tosses is 

 

                               3!                                 6 

 P(0) = ------------ 0.5
0
 x 0.5

3 
= ----------x 1.0 x 0.125 = 0.125 

                         (3-0)! 0!                             6 

 

The probability of getting 2 or fewer heads in three tosses is the sum of the three probabilities, that is, 0.375 + 0.375 

+ 0.125 = 0.875 . 

Runs Test 

 
 Random sampling is a major assumption of nearly all statistical tests of hypotheses.  The Runs test is one 

method available for testing whether or not an obtained sample is likely to have been drawn at random.  It is based 

on the order of the values in the sample and the number of values increasing or decreasing in a sequence.  For 

example, if a variable is composed of dichotomous values such as zeros (0) and ones (1) then a run of values such as 

0,0,0,0,1,1,1,1 would not likely to have been selected at random.  As another example, the values 0,1,0,1,0,1,0,1 

show a definite cyclic pattern and also would not likely be found by random sampling.  The test involves finding the 

mean of the values and examining values above and below the mean (excluding values at the mean.)  The values 

falling above or below the mean should occur in a random fashion.  A run consists of a series of values above the 

mean or below the mean.  The expected value for the total number of runs is known and is a function of the sample 

size (N) and the numbers of values above (N1) and below (N2) the mean.  This test may be applied to nominal 

through ratio variable types.   

 

Kendall's Tau and Partial Tau 
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 When two variables are at least ordinal, the tau correlation may be obtained as a measure of the relationship 

between the two variables.  The values of the two variables are ranked.  The method involves ordering the values 

using one of the variables.  If the values of the other variable are in the same order, the correlation would be 1.0.  If 

the order is exactly the opposite for this second variable, the correlation would be -1.0 just as if we had used the 

Pearson Product-Moment correlation method.  Each pair of ranks for the second variable are compared.  If the order 

(from low to high) is correct for a pair it is assigned a value of +1.  If the pair is in reverse order, it is assigned a 

value of -1.  These values are summed.  If there are N values then we can obtain the number of pairs of scores for 

one variable as the number of combinations of N things taken 2 at a time which is N(N-1).  The tau statistic is the 

ratio of the sum of 1's and -1's to the total number of pairs.  Adjustments are made in the case of tied scores.  For 

samples larger than 10, tau is approximately normally distributed. 

 

 Whenever two variables are correlated, the relationship observed may, in part, be due to their common 

relationship to a third variable. We may be interested in knowing what the relationship is if we partial out this third 

variable.  The Partial Tau provides this.  Since the distribution of the partial tau is not known, no test of significance 

is included. 

 

The Kaplan-Meier Survival Test 

 

Survival analysis is concerned with studying the occurrence of an event such as death or change in a subject or 

object at various times following the beginning of the study.  Survival curves show the percentage of subjects 

surviving at various times as the study progresses.  In many cases, it is desired to compare survival of an 

experimental treatment with a control treatment.  This method is heavily used in medical research but is not 

restricted to that field.  For example, one might compare the rate of college failure among students in an 

experimental versus a control group. 

 

Kolmogorov-Smirnov Test 

 

 One often is interested in comparing a distribution of observed values with a theoretical distribution of 

values.  Because many statistical tests assume a “normal” distribution, a variety of tests have been developed to 

determine whether or not two distributions are different beyond that expected due to random sampling variations.  

This test lets you compare your distribution with several theoretical distributions. 

 

Contingency Chi-Square 

 

 The frequency chi-square statistic is used to accept or reject hypotheses concerning the degree to which 

observed frequencies depart from theoretical frequencies in a row by column contingency table with fixed marginal 

frequencies.  It therefore tests the independence of the categorical variables defining the rows and columns.  As an 

example, assume 50 males and 50 females are randomly assigned to each of three types of instructional methods to 

learn beginning French, (a) using a language laboratory, (b) using a computer with voice synthesizer and (c) using 

an advanced student tutor.  Following a treatment period, a test is administered to each student with scoring results 

being pass or fail.  The frequency of passing is then recorded for each cell in the 2 by 3 array (gender by treatment).  

If gender is independent of the treatment variable, the expected frequency of males that pass in each treatment would 

be the same as the expected frequency for females.  The chi-squared statistic is obtained as 

 

              row col 

     Σ   Σ  (fij - Fij)
2  

      i=1 j=1  

 χ
2
   =      ----------------------- 

    Fij 

    

where fij is the observed frequency, Fij the expected frequency, and  χ2  is the chi-squared statistic with degrees of 

freedom (rows - 1) times (columns - 1). 
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 The dialog for specifying a chi square analysis is shown below: 

 

 

Fig. 8.1   Chi-Squared Dialog 

The File ChiSqr.LAZ has been loaded for this example.  When the Compute button is clicked, the following results 

are obtained: 

 
Chi-square Analysis Results 

 

 

OBSERVED FREQUENCIES 

 

 

                        Rows 

Variables 

                 COL.1        COL.2        COL.3        COL.4        Total 

     Row 1           5            5            5            5           20  

     Row 2          10            4            7            3           24  

     Row 3           5           10           10            2           27  

     Total          20           19           22           10           71  

EXPECTED FREQUENCIES with   71 cases. 

 

 

Variables 

                  COL.1        COL.2        COL.3        COL.4 

     Row 1       5.634        5.352        6.197        2.817  

     Row 2       6.761        6.423        7.437        3.380  

     Row 3       7.606        7.225        8.366        3.803  

 

ROW PROPORTIONS with   71 cases. 

 

 

Variables 

                  COL.1        COL.2        COL.3        COL.4        Total 

     Row 1       0.250        0.250        0.250        0.250        1.000  

     Row 2       0.417        0.167        0.292        0.125        1.000  

     Row 3       0.185        0.370        0.370        0.074        1.000  

     Total       0.282        0.268        0.310        0.141        1.000  
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COLUMN PROPORTIONS with   71 cases. 

 

 

Variables 

                  COL.1        COL.2        COL.3        COL.4        Total 

     Row 1       0.250        0.263        0.227        0.500        0.282  

     Row 2       0.500        0.211        0.318        0.300        0.338  

     Row 3       0.250        0.526        0.455        0.200        0.380  

     Total       1.000        1.000        1.000        1.000        1.000  

 

 

 

 

PROPORTIONS OF TOTAL N with   71 cases. 

 

 

Variables 

                  COL.1        COL.2        COL.3        COL.4        Total 

     Row 1       0.070        0.070        0.070        0.070        0.282  

     Row 2       0.141        0.056        0.099        0.042        0.338  

     Row 3       0.070        0.141        0.141        0.028        0.380  

     Total       0.282        0.268        0.310        0.141        1.000  

 

CHI-SQUARED VALUE FOR CELLS with   71 cases. 

 

 

Variables 

                  COL.1        COL.2        COL.3        COL.4 

     Row 1       0.071        0.023        0.231        1.692  

     Row 2       1.552        0.914        0.026        0.043  

     Row 3       0.893        1.066        0.319        0.855  

Chi-square =    7.684 with D.F. = 6. Prob. > value =    0.262 

 

Liklihood Ratio =    7.498 with prob. > value = 0.2772 

 

G statistic =    7.498 with prob. > value = 0.2772 

 

phi correlation = 0.3290 

 

Pearson Correlation r = -0.0537 

 

Mantel-Haenszel Test of Linear Association =    0.202 with probability > value = 0.6532 

 

The coefficient of contingency =    0.312 

 

Cramers V =    0.233 

 

Spearman Rank Correlation 

 

 When the researcher’s data represent ordinal measures such as ranks with some observations being tied for 

the same rank, the Rank Correlation may be the appropriate statistic to calculate.  While the computation for the case 

of untied cases is the same as that for the Pearson Product-Moment correlation, the correction for tied ranks is found 

only in the Spearman correlation.  In addition, the interpretation of the significance of the Rank Correlation may 

differ from that of the Pearson Correlation where bivariate normalcy is assumed.  Shown below is an example for 

obtaining the Spearman Rank Correlation: 
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Fig. 8.2  Spearman Rank Correlation Form 

Spearman Rank Correlation Between situps & jumps 

 

Tied ranks correction for X =   662.00 for 0 ties 

Tied ranks correction for Y =   663.50 for 0 ties 

 

Observed scores, their ranks and differences between ranks 

CASE     situps    Ranks      jumps     Ranks Rank Difference 

   1     162.00     13.00     60.00     12.50      0.50 

   2     110.00      8.50     60.00     12.50     -4.00 

   3     101.00      5.00    101.00     16.00    -11.00 

   4     105.00      7.00     37.00      3.00      4.00 

   5     155.00     12.00     58.00     11.00      1.00 

   6     101.00      5.00     42.00      8.00     -3.00 

   7     101.00      5.00     38.00      4.50      0.50 

   8     125.00     11.00     40.00      6.50      4.50 

   9     200.00     14.00     40.00      6.50      7.50 

  10     251.00     20.00    250.00     20.00      0.00 

  11     120.00     10.00     38.00      4.50      5.50 

  12     210.00     15.50    115.00     18.00     -2.50 

  13     215.00     17.00    105.00     17.00      0.00 

  14      50.00      1.00     50.00     10.00     -9.00 

  15      70.00      3.00     31.00      2.00      1.00 

  16     210.00     15.50    120.00     19.00     -3.50 

  17      60.00      2.00     25.00      1.00      1.00 

  18     230.00     19.00     80.00     15.00      4.00 

  19     225.00     18.00     73.00     14.00      4.00 

  20     110.00      8.50     43.00      9.00     -0.50 

Spearman Rank Correlation =  0.695 

 

t-test value for hypothesis r = 0 is 4.103 

Probability > t = 0.0007 

 

Pearson r for original scores :=  0.669 

For the Original Scores: 

Mean X  Variance X  Std.Dev. X  Mean Y  Variance Y  Std.Dev. Y 

  145.55   3914.58     62.57     70.30   2629.38     51.28 

 

Mann-Whitney U Test 

 

 An alternative to the Student t-test when the scale of measurement cannot be assumed to be interval or ratio 

and the distribution of errors is unknown is a non-parametric test known as the Mann-Whitney test.  In this test, the 

dependent variable scores for both groups are ranked and the number of times that one groups scores exceed the 
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rank of scores in the other group are recorded.  This total number of times scores in one group exceed those of the 

other is named U.  The sampling distribution of U is known and forms the basis for the hypothesis that the scores 

come from the same population. 

The example below illustrates the calculation of the U test with LazStats using the mannwhitU.LAZ file: 

 

 

Fig. 8.3   The Mann-Whitney U Test Form 

Mann-Whitney U Test 

See pages 116-127 in S. Siegel: Nonparametric Statistics for the Behavioral Sciences 

 

     Score     Rank      Group 

 

      6.00       1.50          1 

      6.00       1.50          2 

      7.00       5.00          1 

      7.00       5.00          1 

      7.00       5.00          1 

      7.00       5.00          1 

      7.00       5.00          1 

      8.00       9.50          1 

      8.00       9.50          2 

      8.00       9.50          2 

      8.00       9.50          1 

      9.00      12.00          1 

     10.00      16.00          1 

     10.00      16.00          2 

     10.00      16.00          2 

     10.00      16.00          2 

     10.00      16.00          1 

     10.00      16.00          1 

     10.00      16.00          1 

     11.00      20.50          2 

     11.00      20.50          2 

     12.00      24.50          2 

     12.00      24.50          2 

     12.00      24.50          2 

     12.00      24.50          2 

     12.00      24.50          1 

     12.00      24.50          1 

     13.00      29.50          1 

     13.00      29.50          2 

     13.00      29.50          2 

     13.00      29.50          2 

     14.00      33.00          2 

     14.00      33.00          2 

     14.00      33.00          2 

     15.00      36.00          2 

     15.00      36.00          2 

     15.00      36.00          2 
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     16.00      38.00          2 

     17.00      39.00          2 

 

Sum of Ranks in each Group 

Group   Sum    No. in Group 

  1      200.00    16 

  2      580.00    23 

 

No. of tied rank groups =   9 

Statistic U = 304.0000 

z Statistic (corrected for ties) =   3.4262, Prob. > z = 0.0003 

 

 

Fisher’s Exact Test 

 

 Assume you have collected data on principals and superintendents concerning their agreement or 

disagreement to the statement "high school athletes observed drinking or using drugs should be barred from further 

athletic competition".  You record their responses in a table as below: 

 

   Disagree  Agree 

 

Superintendents      2              8 

 

Principals   4                5 

 

You ask, are the responses of superintendents and principals significantly different?  Another way to ask the 

question is, "what is the probability of getting the pattern of responses observed or a more extreme pattern?".  The 

probability of any given pattern of responses in this 2 by 2 table may be calculated from the hypergeometric 

probability distribution as 

 

    (A+B)!(C+D)!(A+C)!(B+D)! 

   P =  -------------------------------------- 

           N!A!B!C!D! 

 

where A, B, C, and D correspond to the frequencies in the four quadrants of the table and N corresponds to the total 

number of individuals sampled. 

 

 When you elect the Statistics / NonParametric / Fisher’s Exact Test option from the menu, you are shown a 

specification form which provides for four different formats for entering data.  We have elected the last format 

(entry of frequencies on the form itself): 

 

 

 



Statistics and Measurement Concepts for LazStats   William G. Miller ©2012 

 

 317 

Fig. 8.4   Fisher's Exact Test Form 

 
 

When we click the Compute button we obtain: 

 
Fisher Exact Probability Test 

 

 

Contingency Table for Fisher Exact Test 

                 Column 

Row             1          2 

 1              2          8 

 2              4          5 

Probability := 0.2090 

 

Cumulative Probability := 0.2090 

 

 

Contingency Table for Fisher Exact Test 

                 Column 

Row             1          2 

 1              1          9 

 2              5          4 

Probability := 0.0464 

 

Cumulative Probability := 0.2554 

 

 

Contingency Table for Fisher Exact Test 

                 Column 

Row             1          2 

 1              0         10 

 2              6          3 

Probability := 0.0031 

 

Cumulative Probability := 0.2585 

 

Tocher ratio computed: 0.002 

A random value of 0.099 selected was greater than the Tocher value. 

Conclusion: Accept the null Hypothesis 

 

Notice that the probability of each combination of cell values as extreme or more extreme than that observed is 

computed and the probabilities summed. 

 

Kendall’s Coefficient of Concordance 

 

 It is not uncommon that a group of people are asked to judge a group of persons or objects by rank ordering 

them from highest to lowest.  It is then desirable to have some index of the degree to which the various judges 

agreed, that is, ranked the objects in the same order.  The Coefficient of Concordance is a measure varying between 

0 and 1 that indicates the degree of agreement among judges.  It is defined as: 

 

 W = Variance of rank sums / maximum variance of rank sums. 

 

The coefficient W may also be used to obtain the average rank correlation among the judges by the formula: 

 

  Mr = (mW - 1) / (m - 1) 

 

 where Mr is the average (Spearman) rank correlation, m is the number of judges and W is the Coefficient of 

Concordance. 

The file sucsintv.LAZ is used to demonstrate the LazStats procedure for this analysis: 
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Fig. 8.5   Coefficient of Concordance Form 

 
Kendall Coefficient of Concordance Analysis 

 

Ranks Assigned to Judge Ratings of Objects 

 

Judge   1            Objects 

    VAR1    VAR2    VAR3    VAR4    VAR5     VAR6 

   5.5000  4.0000  3.0000  2.0000  1.0000  5.5000 

 

Judge   2            Objects 

    VAR1    VAR2    VAR3    VAR4    VAR5     VAR6 

   6.0000  4.5000  3.0000  2.0000  1.0000  4.5000 

 

Judge   3            Objects 

    VAR1    VAR2    VAR3    VAR4    VAR5     VAR6 

   5.5000  3.5000  5.5000  2.0000  1.0000  3.5000 

 

Judge   4            Objects 

    VAR1    VAR2    VAR3    VAR4    VAR5     VAR6 

   6.0000  5.0000  3.5000  2.0000  1.0000  3.5000 

 

Judge   5            Objects 

    VAR1    VAR2    VAR3    VAR4    VAR5     VAR6 

   6.0000  4.0000  4.0000  2.0000  1.0000  4.0000 

 

Judge   6            Objects 

    VAR1    VAR2    VAR3    VAR4    VAR5     VAR6 

   6.0000  5.0000  4.0000  2.5000  1.0000  2.5000 

 

Judge   7            Objects 

    VAR1    VAR2    VAR3    VAR4    VAR5     VAR6 

   6.0000  5.0000  4.0000  3.0000  2.0000  1.0000 

 

Judge   8            Objects 

    VAR1    VAR2    VAR3    VAR4    VAR5     VAR6 

   6.0000  4.5000  3.0000  2.0000  1.0000  4.5000 

 

Judge   9            Objects 

    VAR1    VAR2    VAR3    VAR4    VAR5     VAR6 

   6.0000  4.5000  3.0000  2.0000  1.0000  4.5000 

 

Judge  10            Objects 

    VAR1    VAR2    VAR3    VAR4    VAR5     VAR6 

   6.0000  5.0000  3.5000  2.0000  1.0000  3.5000 

 

Judge  11            Objects 

    VAR1    VAR2    VAR3    VAR4    VAR5     VAR6 

   6.0000  4.5000  2.5000  4.5000  1.0000  2.5000 

 

Judge  12            Objects 

    VAR1    VAR2    VAR3    VAR4    VAR5     VAR6 

   6.0000  5.0000  4.0000  2.5000  1.0000  2.5000 

 

 

Sum of Ranks for Each Object Judged 
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            Objects 

    VAR1    VAR2    VAR3    VAR4    VAR5     VAR6 

  71.0000 54.5000 43.0000 28.5000 13.0000 42.0000 

 

Coefficient of concordance :=      0.834 

Average Spearman Rank Correlation :=      0.819 

Chi-Square Statistic :=   50.037 

Probability of a larger Chi-Square := 0.0000 

Warning - Above Chi-Square is very approximate with 7 or fewer variables! 

Kruskal-Wallis One-Way ANOVA 

 

 One-Way, Fixed-Effects Analysis of Variance assumes that error (residual) scores are normally distributed, 

that subjects are randomly selected from the population and assigned to treatments, and that the error scores are 

equally distributed in the populations representing the treatments.  The scale of measurement for the dependent 

variable is assumed to be interval or ratio.  But what can you do if, in fact, your measure is only ordinal (for example 

like most classroom tests), and you cannot assume normally distributed, homoscedastic error distributions? 

 

 Why, of course, you convert the scores to ranks and ask if the sum of rank scores in each treatment group 

are the same within sampling error!  The Kruskal-Wallis One-Way Analysis of variance converts the dependent 

score for each subject in the study to a rank from 1 to N.  It then examines the ranks attained by subjects in each of 

the treatment groups.  Then a test statistic which is distributed as Chi-Squared with degrees of freedom equal to the 

number of treatment groups minus one is obtained from: 

 

                                      12          K 

  H =  ----------     Rj
2 / nj - 3(N + 1) 

          N(N + 1)  j=1 

 

where N is the total number of subjects in the experiment, nj is the number of subjects in the jth treatment, K is the 

number of treatments and Rj is the sum of ranks in the jth treatment. 

 

 The Statistics / NonParametric / Kruskal-Wallis One-Way ANOVA option on your menu will permit 

analysis of data in a data file.  At least two variables should be defined for each case - a variable recording the 

treatment group for the case and a variable containing the dependent variable score. 

 

 The file labeled kwanova.LAZ is used to demonstrate this LazStats procedure. 

 

 

Fig. 8.6   The Kruskal-Wallis One-Way ANOVA Form 

 
Kruskal - Wallis One-Way Analysis of Variance 
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See pages 184-194 in S. Siegel: Nonparametric Statistics for the Behavioral Sciences 

 

     Score     Rank      Group 

 

     61.00       1.00          1 

     82.00       2.00          2 

     83.00       3.00          1 

     96.00       4.00          1 

    101.00       5.00          1 

    109.00       6.00          2 

    115.00       7.00          3 

    124.00       8.00          2 

    128.00       9.00          1 

    132.00      10.00          2 

    135.00      11.00          2 

    147.00      12.00          3 

    149.00      13.00          3 

    166.00      14.00          3 

 

Sum of Ranks in each Group 

Group   Sum    No. in Group 

  1       22.00     5 

  2       37.00     5 

  3       46.00     4 

 

No. of tied rank groups =   0 

Statistic H uncorrected for ties =   6.4057 

Correction for Ties = 1.0000 

Statistic H corrected for ties =   6.4057 

Corrected H is approx. chi-square with   2 D.F. and probability = 0.0406 

 

Wilcoxon Matched-Pairs Signed Ranks Test 

 

 This test provides an alternative to the student t-test for matched score data where the assumptions for the 

parametric t-test cannot be met.  In using this test, the difference is obtained between each of N pairs of scores 

observed on matched objects, for example, the difference between pretest and post-test scores for a group of 

students.  The difference scores obtained are then ranked.  The ranks of negative score differences are summed and 

the ranks of positive score differences are summed.  The test statistic T is the smaller of these two sums.  Difference 

scores of 0 are eliminated since a rank cannot be assigned.  If the null hypothesis of no difference between the 

groups of scores is true, the sum of positive ranks should not differ from the sum of negative ranks beyond that 

expected by chance.  Given N ranks, there is a finite number of ways of obtaining a given sum T.  There are a total 

of 2 raised to the N ways of assigning positive and negative differences to N ranks.  In a sample of 5 pairs, for 

example, there are 2 to the fifth power = 32 ways.  Each rank sign would occur with probability of 1/32.  The 

probability of getting a particular total T is 

 

   Ways of getting T 

  PT = ----------------------- 

          2N 

 

The cumulative probabilities for T, T-1,....,0 are obtained for the observed T value and reported.  For large samples, 

a normally distributed z score is approximated and used. 

 

The file labeled wilcoxon.LAZ is used as our example: 
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Fig. 8.7  The Wilcoxon Matched Pairs Signed Ranks Test 

 
The Wilcoxon Matched-Pairs Signed-Ranks Test 

See pages 75-83 in S. Seigel's Nonparametric Statistics for the Social Sciences 

 

Ordered Cases with cases having 0 differences eliminated: 

Number of cases with absolute differences greater than 0 = 8 

CASE      VAR1         VAR2    Difference   Signed Rank 

  3       73.00       74.00     -1.00     -1.00 

  8       65.00       62.00      3.00      2.00 

  7       76.00       80.00     -4.00     -3.00 

  4       43.00       37.00      6.00      4.00 

  5       58.00       51.00      7.00      5.00 

  6       56.00       43.00     13.00      6.00 

  1       82.00       63.00     19.00      7.00 

  2       69.00       42.00     27.00      8.00 

 

Smaller sum of ranks (T) =     4.00 

Approximately normal z for test statistic T =  1.960 

Probability (1-tailed) of greater z = 0.0250 

NOTE: For N < 25 use tabled values for Wilcoxon Test 

 

Cochran Q Test 

 

 The Cochran Q test is used to test whether or not two or more matched sets of frequencies or proportions, 

measured on a nominal or ordinal scale, differ significantly among themselves.  Typically, observations are 

dichotomous, that is, scored as 0 or 1 depending on whether or not the subject falls into one or the other criterion 

group.  An example of research for which the Q test may be applied might be the agreement or disagreement to the 

question "Should abortions be legal?".  The research design might call for a sample of n subjects answering the 

question prior to a debate and following a debate on the topic and subsequently six months later.  The Q test applied 

to these data would test whether or not the proportion agreeing was the same under these three time periods.  The Q 

statistic is obtained as 

 

                                                        K             K 

   (K - 1)  Σ Gj
2 - ( Σ  Gj )

2 

              j=1           j=1 

  Q =  ---------------------------------- 

                                                n          n 

   K  Σ Li -  Σ Li
2 

                                              i=1       i=1 
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  where K is the number of treatments (groups of scores, Gj is the sum with the jth treatment group, 

and Li is the sum within case i (across groups).  The Q statistic is distributed approximately as Chi-squared with 

degrees of freedom K-1.  If Q exceeds the Chi-Squared value corresponding to the cumulative probability value, the 

hypothesis of equal proportions for the K groups is rejected.  ItemData.TAB is the file used to demonstrate this 

procedure. 

 

 

Fig. 8.8   The Q Test Form 

Cochran Q Test for Related Samples 

See pages 161-166 in S. Siegel: Nonparametric Statistics for the Behavioral Sciences 

McGraw-Hill Book Company, New York, 1956 

 

Cochran Q Statistic =  3.000 

which is distributed as chi-square with 1 D.F. and probability = 0.0833 

Sign Test 

Did you hear about the nonparametrician who couln't get his driving license? He couldn't pass the sign test. 

 

 Imagine a counseling psychologist who sees, over a period of months, a number of clients with personal 

problems.  Suppose the psychologist routinely contacts each client for a six month followup to see how they are 

doing. The counselor could make an estimate of client "adjustment" before treatment and at the followup time (or 

better still, have another person independently estimate adjustment at these two time periods).  We may assume 

some underlying continuous "adjustment" variable even though we have no idea about the population distribution of 

the variable.  We are intrested in knowing, of course, whether or not people are better adjusted six months after 

therapy than before.  Note that we are only comparing the "before" and "after" state of the individuals with each 

other, not with other subjects.  If we assign a + to the situation of improved adjustment and a - to the situation of 

same or poorer adjustment, we have the data required for a Sign Test.  If treatment has had no effect, we would 

expect approximately one half the subjects would receive plus signs and the others negative signs.  The sampling 

distribution of the proportion of plus signs is given by the binomial probability distribution with parameter of .5 and 

the number of events equal to n, the number of pairs of observations.  We will use a file labeled signtest.tab for an 

example.  It contains an “adjustment” score for married couples (M and F): 
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Fig. 8.9  The Sign Test Form 

Results for the Sign Test 

 

Frequency of  11 out of 17 observed + sign differences. 

Frequency of   3 out of 17 observed - sign differences. 

Frequency of   3 out of 17 observed no differences. 

The theoretical proportion expected for +'s or -'s is 0.5  

The test is for the probability of the +'s or -'s (which ever is fewer) 

as small or smaller than that observed given the expected proportion. 

 

Binary Probability of   0 = 0.0001 

Binary Probability of   1 = 0.0009 

Binary Probability of   2 = 0.0056 

Binary Probability of   3 = 0.0222 

Binomial Probability of     3 or smaller out of    14 = 0.0287 

 

Friedman Two Way ANOVA 

 

 Imagine an experiment using, say, ten groups of subjects with four subjects in each group that have been 

matched on some relevant variables (or even using the same subjects).  The matched subjects in each group are 

exposed to four different treatments such as teaching methods, dosages of medicine, proportion of positive responses 

to statements or questions, etc.  Assume that some criterion measure on at least a nominal scale is available to 

measure the effect of each treatment.  Now rank the subjects in each group on the basis of their scores on the 

criterion.  We may now ask whether the ranks in each treatment come from the same population.  Had we been able 

to assume an interval or ratio measure and normally distributed errors, we might have used a repeated measures 

analysis of variance.  Failing to meet the parametric test assumptions, we instead examine the sum of ranks obtained 

under each of the treatment conditions and ask whether they differ significantly.  The test statistic is distributed as 

Chi-squared with degrees of freedom equal to the number of treatments minus one.  It is obtained as where N is the 

number of groups, K the number of treatments (or number of subjects in each group), and Rj is the sum of ranks in 

each treatment.   

 Friedman_ties.LAZ will be used to demonstrate this procedure.  Shown below is the dialog form to specify 

the analysis and the results of the analysis. 
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Fig. 8.10  The Friedman Analysis Specification Form 

FRIEDMAN TWO-WAY ANOVA ON RANKS 

See pages 166-173 in S. Siegel's Nonparametric Statistics 

for the Behavioral Sciences, McGraw-Hill Book Co., New York, 1956 

 

 

Treatment means - values to be ranked. with   18 cases. 

 

 

Variables 

                     X1           X2           X3 

   Group 1      10.333       10.333        7.667  

   Group 2      11.000       10.667        7.000  

   Group 3      12.333       10.333        6.333  

   Group 4       5.333        5.667        3.667  

   Group 5       4.000        3.000        2.667  

   Group 6       3.000        2.000        2.333  

 

 

 

 

Number in each group's treatment. 

 

 

                        GROUP 

Variables 

                    X1           X2           X3 

   Group 1           3            3            3  

   Group 2           3            3            3  

   Group 3           3            3            3  

   Group 4           3            3            3  

   Group 5           3            3            3  

   Group 6           3            3            3  

 

 

 

 

Score Rankings Within Groups with   18 cases. 

 

 

Variables 

                     X1           X2           X3 

   Group 1       2.500        2.500        1.000  

   Group 2       3.000        2.000        1.000  

   Group 3       3.000        2.000        1.000  

   Group 4       2.000        3.000        1.000  

   Group 5       3.000        2.000        1.000  

   Group 6       3.000        1.000        2.000  

 

 

 

 

TOTAL RANKS with   18 valid cases. 

 

Variables           X1           X2           X3 
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                16.500       12.500        7.000  

 

 

Chi-square with 2 D.F. :=    7.583 with probability := 0.0226 

Chi-square too approximate-use exact table (TABLE N) 

page 280-281 in Siegel 

 

Probability of a Binomial Event 

 

 The BINOMIAL program is a short program to calculate the probability of obtaining k or fewer 

occurrences of a dichotomous variable out of a total of n observations when the probability of an occurrence is 

known.  For example, assume a test consists of 5 multiple choice items with each item scored correct or incorrect.  

Also assume that there are five equally plausible choices for a student with no knowledge concerning any item.  In 

this case, the probability of a student guessing the correct answer to a single item is 1/5 or .20 .  We may use the 

binomial program to obtain the probabilities that a student guessing on each item of the test gets a score of 0, 1, 2, 3, 

4, or 5 items correct by chance alone. 

 

 The formula for the probability of a dichotomous event k where the probability of a single event is p (and 

the probability of a non-event is q = 1 - p is given as: 

 

                             N!             

 P(k) = ------------- p
(N-k)

   q
k
 

                         (N - k)! k! 

 

For example, if a “fair” coin is tossed three times with the probabilities of heads is p = .5 (and q = .5) then the 

probabilty of observing 2 heads is 

 

                               3! 

 P(2) = ------------0.5
1
 x 0.5

2
 

                         (3-2)! 2! 

 

                          3 x 2 x 1 

                     = -------------- x 0.5 x 0.25   

                         1 x (2 x 1) 

 

                            6 

                    = --------- x 0.125   =   .375 

                            2 

 

Similarly, the probability of getting one toss turn up heads is 

 

                                  3!                                6 

 P(1) =  ------------ 0.5
2
 x 0.5 =  ----------- x 0.25 x 0.5 = .375 

                           (3-1)! 1!                             2 

 

and the probability of getting zero heads turn up in three tosses is 

 

                               3!                                 6 

 P(0) = ------------ 0.5
0
 x 0.5

3 
= ----------x 1.0 x 0.125 = 0.125 

                         (3-0)! 0!                             6 

 

The probability of getting 2 or fewer heads in three tosses is the sum of the three probabilities, that is, 0.375 + 

0.375 + 0.125 = 0.875 . 

 

Shown below is the form used to obtain binomial probabilities and an example run of the procedure: 
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Fig. 8.11  Binomial Probability Form 

Binomial Probability Test 

 

Frequency of 3 out of 10 observed 

The theoretical proportion expected in category A is 0.500 

The test is for the probability of a value in category A as small or smaller 

than that observed given the expected proportion. 

Probability of 0 = 0.0010 

Probability of 1 = 0.0098 

Probability of 2 = 0.0439 

Probability of 3 = 0.1172 

Binomial Probability of 3 or less out of 10 = 0.1719 

 

 

Runs Test 

 
 Random sampling is a major assumption of nearly all statistical tests of hypotheses.  The Runs test is one 

method available for testing whether or not an obtained sample is likely to have been drawn at random.  It is based 

on the order of the values in the sample and the number of values increasing or decreasing in a sequence.  For 

example, if a variable is composed of dichotomous values such as zeros (0) and ones (1) then a run of values such as 

0,0,0,0,1,1,1,1 would not likely to have been selected at random.  As another example, the values 0,1,0,1,0,1,0,1 

show a definite cyclic pattern and also would not likely be found by random sampling.  The test involves finding the 

mean of the values and examining values above and below the mean (excluding values at the mean.)  The values 

falling above or below the mean should occur in a random fashion.  A run consists of a series of values above the 

mean or below the mean.  The expected value for the total number of runs is known and is a function of the sample 

size (N) and the numbers of values above (N1) and below (N2) the mean.  This test may be applied to nominal 

through ratio variable types.   

 

 The file labeled runstest.LAZ will be used to demonstrate the use of this procedure. 
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Fig. 8.12   Test for Randomness Using the Runs Test 

 

Kendall's Tau and Partial Tau 

 
 When two variables are at least ordinal, the tau correlation may be obtained as a measure of the relationship 

between the two variables.  The values of the two variables are ranked.  The method involves ordering the values 

using one of the variables.  If the values of the other variable are in the same order, the correlation would be 1.0.  If 

the order is exactly the opposite for this second variable, the correlation would be -1.0 just as if we had used the 

Pearson Product-Moment correlation method.  Each pair of ranks for the second variable are compared.  If the order 

(from low to high) is correct for a pair it is assigned a value of +1.  If the pair is in reverse order, it is assigned a 

value of -1.  These values are summed.  If there are N values then we can obtain the number of pairs of scores for 

one variable as the number of combinations of N things taken 2 at a time which is N(N-1).  The tau statistic is the 

ratio of the sum of 1's and -1's to the total number of pairs.  Adjustments are made in the case of tied scores.  For 

samples larger than 10, tau is approximately normally distributed. 

 

 Whenever two variables are correlated, the relationship observed may, in part, be due to their common 

relationship to a third variable. We may be interested in knowing what the relationship is if we partial out this third 

variable.  The Partial Tau provides this.  Since the distribution of the partial tau is not known, no test of significance 

is included. 

 

 The file labeled TAUDATA.LAZ has been used to illustrate this procedure in the Fig. below: 
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Fig. 8.13  Kendall’s Tau and Partial Tau Form 

 
Ranks with   12 cases. 

 

 

Variables 

                      X            Y            Z 

         1       3.000        2.000        1.500  

         2       4.000        6.000        1.500  

         3       2.000        5.000        3.500  

         4       1.000        1.000        3.500  

         5       8.000       10.000        5.000  

         6      11.000        9.000        6.000  

         7      10.000        8.000        7.000  

         8       6.000        3.000        8.000  

         9       7.000        4.000        9.000  

        10      12.000       12.000       10.500  

        11       5.000        7.000       10.500  

        12       9.000       11.000       12.000  

 

Kendall Tau for File: C:\lazarus\Projects\LazStats\LazStatsData\TAUDATA.LAZ 

 

Kendall Tau for variables X and Y 

Tau =   0.6667  z =    3.017 probability > |z| = 0.001 

 

Kendall Tau for variables X and Z 

Tau =   0.3877  z =    1.755 probability > |z| = 0.040 

 

Kendall Tau for variables Y and Z 

Tau =   0.3567  z =    1.614 probability > |z| = 0.053 

 

Partial Tau =   0.6136 

 

NOTE: Probabilities are for large N (>10) 

 

The Kaplan-Meier Survival Test 

 

Survival analysis is concerned with studying the occurrence of an event such as death or change in a subject or 

object at various times following the beginning of the study.  Survival curves show the percentage of subjects 

surviving at various times as the study progresses.  In many cases, it is desired to compare survival of an 

experimental treatment with a control treatment.  This method is heavily used in medical research but is not 

restricted to that field.  For example, one might compare the rate of college failure among students in an 

experimental versus a control group. 
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To obtain a survival curve you need only two items of information in your data file for each subject: the survival 

time and a code for whether or not an event occurred or the subject has been lost from the study moved, disappeared, 

etc. (censored.)  If an event such as death occurred, it is coded as a 1.  If censored it is coded as a 2.  

 
CASES FOR FILE C:\LazStats\KaplanMeier.LAZ 

 

           0        Time  Event_Censored             

           1           1           2             

           2           3           2             

           3           5           2             

           4           6           1             

           5           6           1             

           6           6           1             

           7           6           1             

           8           6           1             

           9           6           1             

          10           8           1             

          11           8           1             

          12           9           2             

          13          10           1             

          14          10           1             

          15          10           2             

          16          12           1             

          17          12           1             

          18          12           1             

          19          12           1             

          20          12           1             

          21          12           1             

          22          12           2             

          23          12           2             

          24          13           2             

          25          15           2             

          26          15           2             

          27          16           2             

          28          16           2             

          29          18           2             

          30          18           2             

          31          20           1             

          32          20           2             

          33          22           2             

          34          24           1             

          35          24           1             

          36          24           2             

          37          27           2             

          38          28           2             

          39          28           2             

          40          28           2             

          41          30           1             

          42          30           2             

          43          32           1             

          44          33           2             

          45          34           2             

          46          36           2             

          47          36           2             

          48          42           1             

          49          44           2             

 

We are really recording data for the "Time" variable that is sequential through the data file.  We are concerned with 

the percent of survivors at any given time period as we progress through the observation times of the study.  We 

record the "drop-outs" or censored subjects at each time period also.  A unit cannot be censored and be one of the 

deaths - these are mutually exclusive. 

 

Next we show a data file that contains both experimental and control subjects: 

 
CASES FOR FILE C:\LazStats\KaplanMeier.LAZ 

 

           0        Time       Group  Event_Censored             

           1           1           1           2             

           2           3           2           2             

           3           5           1           2             
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           4           6           1           1             

           5           6           1           1             

           6           6           2           1             

           7           6           2           1             

           8           6           2           1             

           9           6           2           1             

          10           8           2           1             

          11           8           2           1             

          12           9           1           2             

          13          10           1           1             

          14          10           1           1             

          15          10           1           2             

          16          12           1           1             

          17          12           1           1             

          18          12           1           1             

          19          12           1           1             

          20          12           2           1             

          21          12           2           1             

          22          12           1           2             

          23          12           2           2             

          24          13           1           2             

          25          15           1           2             

          26          15           2           2             

          27          16           1           2             

          28          16           2           2             

          29          18           2           2             

          30          18           2           2             

          31          20           2           1             

          32          20           1           2             

          33          22           2           2             

          34          24           1           1             

          35          24           2           1             

          36          24           1           2             

          37          27           1           2             

          38          28           2           2             

          39          28           2           2             

          40          28           2           2             

          41          30           2           1             

          42          30           2           2             

          43          32           1           1             

          44          33           2           2             

          45          34           1           2             

          46          36           1           2             

          47          36           1           2             

          48          42           2           1             

          49          44           1           2             

 

In this data we code the groups as 1 or 2.  Censored cases are always coded 2 and Events are coded 1.  This data is, 

in fact, the same data as shown in the previous data file.  Note that in time period 6 there were 6 deaths (cases 4-9.)  

Again, notice that the time periods are in ascending order. 

 

Shown below is the specification dialog for this second data file.  This is followed by the output obtained when you 

click the compute button. 
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Fig. 8.14  The Kaplan-Meier Dialog 

Kaplan-Meier Survival Test 

 

Comparison of Two Groups Methd 

 

TIME GROUP CENSORED  TOTAL AT  EVENTS  AT RISK IN  EXPECTED NO.  AT RISK IN  EXPECTED NO. 

                     RISK              GROUP 1     EVENTS IN 1     GROUP 2   EVENTS IN 2 

   0    0        0       49        0        25            0          24              0 

   1    1        1       49        0        25            0          24              0 

   3    2        1       48        0        24            0          24              0 

   5    1        1       47        0        24            0          23              0 

   6    1        0       46        6        23            3          23              3 

   6    1        0       40        0        21            0          19              0 

   6    2        0       40        0        21            0          19              0 

   6    2        0       40        0        21            0          19              0 

   6    2        0       40        0        21            0          19              0 

   6    2        0       40        0        21            0          19              0 

   8    2        0       40        2        21            2          19              1 

   8    2        0       38        0        21            0          17              0 

   9    1        1       38        0        21            0          17              0 

  10    1        0       37        2        20            2          17              1 

  10    1        0       35        0        18            0          17              0 

  10    1        1       35        0        18            0          17              0 

  12    1        0       34        6        17            3          17              3 

  12    1        0       28        0        13            0          15              0 

  12    1        0       28        0        13            0          15              0 

  12    1        0       28        0        13            0          15              0 

  12    2        0       28        0        13            0          15              0 

  12    2        0       28        0        13            0          15              0 

  12    1        1       28        0        13            0          15              0 

  12    2        1       27        0        12            0          15              0 

  13    1        1       26        0        12            0          14              0 

  15    1        1       25        0        11            0          14              0 

  15    2        1       24        0        10            0          14              0 

  16    1        1       23        0        10            0          13              0 

  16    2        1       22        0         9            0          13              0 

  18    2        1       21        0         9            0          12              0 

  18    2        1       20        0         9            0          11              0 

  20    2        0       19        1         9            1          10              1 

  20    1        1       18        0         9            0           9              0 

  22    2        1       17        0         8            0           9              0 

  24    1        0       16        2         8            1           8              1 

  24    2        0       14        0         7            0           7              0 

  24    1        1       14        0         7            0           7              0 

  27    1        1       13        0         6            0           7              0 

  28    2        1       12        0         5            0           7              0 

  28    2        1       11        0         5            0           6              0 

  28    2        1       10        0         5            0           5              0 

  30    2        0        9        1         5            1           4              1 

  30    2        1        8        0         5            0           3              0 

  32    1        0        7        1         5            1           2              1 
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  33    2        1        6        0         4            0           2              0 

  34    1        1        5        0         4            0           1              0 

  36    1        1        4        0         3            0           1              0 

  36    1        1        3        0         2            0           1              0 

  42    2        0        2        1         1            1           1              1 

  44    1        1        0        0         1            0           0              0 

 

 

TIME  DEATHS  GROUP  AT RISK  PROPORTION  CUMULATIVE 

                              SURVIVING   PROP.SURVIVING 

   1      0      1       25      0.0000        1.0000 

   3      0      2       24      0.0000        1.0000 

   5      0      1       24      0.0000        1.0000 

   6      6      1       23      0.9130        0.9130 

   6      0      1       21      0.0000        0.9130 

   6      0      2       19      0.0000        0.8261 

   6      0      2       19      0.0000        0.8261 

   6      0      2       19      0.0000        0.8261 

   6      0      2       19      0.0000        0.8261 

   8      2      2       19      0.8947        0.7391 

   8      0      2       17      0.0000        0.7391 

   9      0      1       21      0.0000        0.9130 

  10      2      1       20      0.9000        0.8217 

  10      0      1       18      0.0000        0.8217 

  10      0      1       18      0.0000        0.8217 

  12      6      1       17      0.7647        0.6284 

  12      0      1       13      0.0000        0.6284 

  12      0      1       13      0.0000        0.6284 

  12      0      1       13      0.0000        0.6284 

  12      0      2       15      0.0000        0.6522 

  12      0      2       15      0.0000        0.6522 

  12      0      1       13      0.0000        0.6284 

  12      0      2       15      0.0000        0.6522 

  13      0      1       12      0.0000        0.6284 

  15      0      1       11      0.0000        0.6284 

  15      0      2       14      0.0000        0.6522 

  16      0      1       10      0.0000        0.6284 

  16      0      2       13      0.0000        0.6522 

  18      0      2       12      0.0000        0.6522 

  18      0      2       11      0.0000        0.6522 

  20      1      2       10      0.9000        0.5870 

  20      0      1        9      0.0000        0.6284 

  22      0      2        9      0.0000        0.5870 

  24      2      1        8      0.8750        0.5498 

  24      0      2        7      0.0000        0.5136 

  24      0      1        7      0.0000        0.5498 

  27      0      1        6      0.0000        0.5498 

  28      0      2        7      0.0000        0.5136 

  28      0      2        6      0.0000        0.5136 

  28      0      2        5      0.0000        0.5136 

  30      1      2        4      0.7500        0.3852 

  30      0      2        3      0.0000        0.3852 

  32      1      1        5      0.8000        0.4399 

  33      0      2        2      0.0000        0.3852 

  34      0      1        4      0.0000        0.4399 

  36      0      1        3      0.0000        0.4399 

  36      0      1        2      0.0000        0.4399 

  42      1      2        1      0.0000        0.0000 

  44      0      1        1      0.0000        0.4399 

 

Total Expected Events for Experimental Group :=   15.000 

Observed Events for Experimental Group :=   10.000 

Total Expected Events for Control Group :=    7.000 

Observed Events for Control Group :=   12.000 

Chisquare =    5.238 with probability = 0.978 

Risk :=    0.389, Log Risk :=   -0.944, Std.Err. Log Risk :=    0.458 

95 Percent Confidence interval for Log Risk = (-1.842,-0.047) 

95 Percent Confidence interval for Risk := (0.159,0.954) 

EXPERIMENTAL GROUP CUMULATIVE PROBABILITY 

CASE TIME DEATHS CENSORED CUM.PROB. 

  1      1     0       1      1.000 

  3      5     0       1      1.000 

  4      6     6       0      0.913 

  5      6     0       0      0.913 



Statistics and Measurement Concepts for LazStats   William G. Miller ©2012 

 

 333 

 12      9     0       1      0.913 

 13     10     2       0      0.822 

 14     10     0       0      0.822 

 15     10     0       1      0.822 

 16     12     6       0      0.628 

 17     12     0       0      0.628 

 18     12     0       0      0.628 

 19     12     0       0      0.628 

 22     12     0       1      0.628 

 24     13     0       1      0.628 

 25     15     0       1      0.628 

 27     16     0       1      0.628 

 32     20     0       1      0.628 

 34     24     2       0      0.550 

 36     24     0       1      0.550 

 37     27     0       1      0.550 

 43     32     1       0      0.440 

 45     34     0       1      0.440 

 46     36     0       1      0.440 

 47     36     0       1      0.440 

 49     44     0       1      0.440 

CONTROL GROUP CUMULATIVE PROBABILITY 

CASE TIME DEATHS CENSORED CUM.PROB. 

  2      3     0       1      1.000 

  6      6     0       0      0.826 

  7      6     0       0      0.826 

  8      6     0       0      0.826 

  9      6     0       0      0.826 

 10      8     2       0      0.739 

 11      8     0       0      0.739 

 20     12     0       0      0.652 

 21     12     0       0      0.652 

 23     12     0       1      0.652 

 26     15     0       1      0.652 

 28     16     0       1      0.652 

 29     18     0       1      0.652 

 30     18     0       1      0.652 

 31     20     1       0      0.587 

 33     22     0       1      0.587 

 35     24     0       0      0.514 

 38     28     0       1      0.514 

 39     28     0       1      0.514 

 40     28     0       1      0.514 

 41     30     1       0      0.385 

 42     30     0       1      0.385 

 44     33     0       1      0.385 

 48     42     1       0      0.000 

 

 

The chi-square coefficient as well as the graph indicates no difference was found between the experimental and 

control group beyond what is reasonably expected through random selection from the same population.  
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Fig. 8.15  Kaplan-Meier Survival Plot 

 

Sen’s Slope Estimate (Series Data) 

 

 The BoltSize.LAZ file is used to illustrate this procedure.  The purpose is to estimate the slope from one 

time period to another time period for a series of data over equal intervals of time.  The optional plot provides a 

graphical representation of the slopes obtained.  One can often visually spot non-random patterns in the data and 

cyclic trends. 

 

 

Fig. 8.16   Sen's Slope Estimates for Series Data 
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Fig. 8.17  Plot of Slopes From Sen's Slope Estimates 

Sens Detection and Estimation of Trends 

Number of data points = 40, Confidence Interval = 0.95 

 

Results for BoltLngth 

Median Slope for 780 values =    0.000 

Mann-Kendall Variance statistic = 1973.000 (2 ties) 

Ranks of the lower and upper confidence =  353.469,  427.531 

Corresponding lower and upper slopes =    0.000,    0.000 

 

Kolmogorov-Smirnov Test 

 

 One often is interested in comparing a distribution of observed values with a theoretical distribution of 

values.  Because many statistical tests assume a “normal” distribution, a variety of tests have been developed to 

determine whether or not two distributions are different beyond that expected due to random sampling variations.  

This test lets you compare your distribution with several theoretical distributions.  We have loaded the file labeled 

“Cansas.LAZ” as an example.  Below is the dialog form used to specify our analysis.  We will compare the 

distribution of the waist variable to a normal distribution. 

 

 

Fig. 8.18  Kolmogorov-Smirnov Test of Similar Distributions 

The results for our sample are shown below: 
Distribution comparison by Bill Miller 

 

                                           Normal       Normal       Normal 



Statistics and Measurement Concepts for LazStats   William G. Miller ©2012 

 

 336 

  X1 Value    Frequency   Cum. Freq.     X2 Value    Frequency   Cum. Freq. 

    31.000            1        1.000       -3.000            0        0.000 

    32.000            1        2.000       -2.625            0        0.000 

    33.000            4        6.000       -2.250            0        0.000 

    34.000            3        9.000       -1.875            1        1.000 

    35.000            2       11.000       -1.500            1        2.000 

    36.000            3       14.000       -1.125            2        4.000 

    37.000            3       17.000       -0.750            3        7.000 

    38.000            2       19.000       -0.375            3       10.000 

    39.000            0       19.000        0.000            3       13.000 

    40.000            0       19.000        0.375            3       16.000 

    41.000            0       19.000        0.750            2       18.000 

    42.000            0       19.000        1.125            1       19.000 

    43.000            0       19.000        1.500            1       20.000 

    44.000            0       19.000        1.875            0       20.000 

    45.000            0       19.000        2.250            0       20.000 

    46.000            1       20.000        2.625            0       20.000 

 Kolmogorov Probability = 0.6993741996864222, Max Dist = 0.25 

 

 

Fig. 8.19  Plot of Distributions in the Kolmogorov-Smirnov Test 

Kappa and Weighted Kappa 

 

Unweigthed and weighted Kappa Coefficents:  This procedure provides both the unweighted and 

weighted Kappa coefficients for assessing the consistency of judgements of two raters.  It also provides 

other measures of independence of the ratings.  If nominal categories are used in the ratings, the  

unweighted statistic is appropriate.  If the categories repesent ordinal data, the weighted Kappa statistic 

may be appropriate.  The file labeled KappaTest4.LAZ has been used to illustrate this procedure.  Shown below is 

the dialog form and the analysis of the data: 

 

 

Fig. 8.20  Kappa Coefficient of Rater Agreement Form 
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Chi-square Analysis Results for RaterA and RaterB 

No. of Cases = 100 

 

 

OBSERVED FREQUENCIES 

 

 

                        Frequencies 

Variables 

                COL. 1       COL. 2       COL. 3        Total 

     Row 1          44            5            1           50  

     Row 2           7           20            3           30  

     Row 3           9            5            6           20  

     Total          60           30           10          100  

 

 

 

 

EXPECTED FREQUENCIES with    9 cases. 

 

 

Variables 

                 COL. 1       COL. 2       COL. 3 

     Row 1      30.000       15.000        5.000  

     Row 2      18.000        9.000        3.000  

     Row 3      12.000        6.000        2.000  

 

 

 

 

ROW PROPORTIONS with    9 cases. 

 

 

Variables 

                 COL. 1       COL. 2       COL. 3        Total 

     Row 1       0.880        0.100        0.020        1.000  

     Row 2       0.233        0.667        0.100        1.000  

     Row 3       0.450        0.250        0.300        1.000  

     Total       0.600        0.300        0.100        1.000  

 

 

 

 

COLUMN PROPORTIONS with    9 cases. 

 

 

Variables 

                 COL. 1       COL. 2       COL. 3        Total 

     Row 1       0.733        0.167        0.100        0.500  

     Row 2       0.117        0.667        0.300        0.300  

     Row 3       0.150        0.167        0.600        0.200  

     Total       1.000        1.000        1.000        1.000  

 

 

 

 

PROPORTIONS OF TOTAL N with    9 cases. 

 

 

Variables 

                 COL. 1       COL. 2       COL. 3        Total 

     Row 1       0.440        0.050        0.010        0.500  

     Row 2       0.070        0.200        0.030        0.300  

     Row 3       0.090        0.050        0.060        0.200  

     Total       0.600        0.300        0.100        1.000  

 

 

 

 

CHI-SQUARED VALUE FOR CELLS with    9 cases. 

 

 

Variables 

                 COL. 1       COL. 2       COL. 3 
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     Row 1       6.533        6.667        3.200  

     Row 2       6.722       13.444        0.000  

     Row 3       0.750        0.167        8.000  

 

 

 

 

Chi-square =   45.483 with D.F. = 4. Prob. > value =    0.000 

 

Liklihood Ratio =   44.398 with prob. > value = 0.0000 

 

phi correlation = 0.6744 

 

Pearson Correlation r = 0.4772 

 

Mantel-Haenszel Test of Linear Association =   22.541 with probability > value = 0.0000 

 

The coefficient of contingency =    0.559 

 

Cramers V =    0.477 

 

Unweighted Kappa =   0.4915 

 

Observed Linear Weights with    9 cases. 

 

 

Variables 

                 COL. 1       COL. 2       COL. 3 

     Row 1       1.000        0.500        0.000  

     Row 2       0.500        1.000        0.500  

     Row 3       0.000        0.500        1.000  

 

 

 

 

Observed Quadratic Weights with    9 cases. 

 

 

Variables 

                 COL. 1       COL. 2       COL. 3 

     Row 1       1.000        0.750        0.000  

     Row 2       0.750        1.000        0.750  

     Row 3       0.000        0.750        1.000  

 

 

 

 

Linear Weighted Kappa =   0.4737 

Quadratic Weighted Kappa =   0.4545 

 

 

Generalized Kappa 

 

Generalized Kappa:   This procedure calculates the Kappa Coefficient for objects or subjects classified into two or 

more categories by a group of judges or procedures.  Each object is coded with a sequential integer ranging from 1 

to the number of objects.  Each judge is coded with an integer from 1 to the number of judges. 

The categories into which the judges place the objects are coded with an integer from 1 to the number of  

categories.  The codes for the objects, judges and category placements are column variables.  The file labeled 

KappaTest3.LAZ has been used to demonstrate this analysis: 
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Fig. 8.21   Generalized Kappa Form 

Generalized Kappa Coefficient Procedure 

adapted from the program written by Giovanni Flammia 

copywritten 1995, M.I.T. Lab. for Computer Science 

 

2 Raters using 3 Categories to rate 1 Objects 

 

Frequency[1][1] = 5.000000 

Frequency[1][2] = 3.000000 

Frequency[1][3] = 2.000000 

Frequency[2][1] = 6.000000 

Frequency[2][2] = 3.000000 

Frequency[2][3] = 1.000000 

Average_Frequency[1] = 5.500000 

Average_Frequency[2] = 3.000000 

Average_Frequency[3] = 1.500000 

PChance = 0.215789 

PObs = 0.384211 

Kappa = 0.214765 

z for Kappa =    0.216 with probability >    0.415 

RIDIT Analysis 

 

Ridit analysis was proposed by Bross4 for both the description of differences between groups on an ordered 

categorical scale, and the testing of the significance of those differences. The term ridit is derived from the initials of 

"relative to an identified distribution." The analysis begins with the identification of a population to serve as a 

standard or reference group. For the reference group, we estimate that the proportion of all cases with a value on the 

underlying continuum is falling at or below the midpoint of each interval, that is, each interval's ridit. The final 

values are the ridits associated with the various categories. The ridit for a category, then, is nothing but the 

proportion of all subjects from the reference group falling in the lower ranking categories, plus half the proportion 

falling in the given category.   

Given the distribution of any other group over the same categories, the mean ridit for that group may be calculated. 

The resulting mean value is interpretable as a probability.  The mean ridit for a group is the probability that a 

randomly-selected case from it will get better score than a randomly-selected case from the standard group.  

Mathematically, the mean ridit for the reference group must always be .5. This is consistent with the fact that, if two 

cases are randomly selected from the same population, the first case will be at least as high half the time, and will be 

at least as low also half the time.  

Pairwise comparisons. -In most clinical studies the most sensible comparisons are those pairwise contrasts 

comparing one treatment group with another. There are, in general, K = k(k+l)/2 possible pairwise comparisons 

among the k+l groups.  Critical ratio tests are presented for comparing each group with the standard and each group 

with the others. As a control for the increased likelihood of falsely finding significance merely because several tests 

were performed, we recommend the Bonferroni criterion. If the desired overall significance level is , each 

comparison should be tested at the significance level /K. Thus, if  = 0.05 and the number of groups is K = 6, /K 

= 0.0083 and the corresponding critical normal curve value is 2.64. This is the criterion used for adjudging the 

significance of each individual pairwise comparison.  

Confidence intervals. - The standard errors defined explicitly or implicitly may be used to set confidence limits 

about the probability that a typical case in one group obtains a higher score than a typical case in another. In order to 
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assure that the overall confidence in the entire set of intervals is at least 100(1 - % ) (usually 95%), the Bonferroni 

constant, say B, should be the factor multiplying the standard error, and not the usual 1.96.  

 

An Example.  A file labeled “TEETH.LAZ” contains results from a dental study of pain suffered by patients using 

four different pain relief treatments.  The subjects indicated degree of pain felt after a given period of time following 

the dental work.  

 

The dialog form used in the analysis of this data is shown below: 

 

 

Fig. 8.22   RIDIT Analysis Dialogue Form 

 

When the Compute button was clicked, the following results were obtained: 

 
Chi-square Analysis Results 

No. of Cases = 365 

 

 

OBSERVED FREQUENCIES 

 

 

                        Frequencies 

Variables 

         Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin        Total 

      None           0            1            0            1            2  

      Poor           6            3           18            4           31  

      Fair          10            5           10           11           36  

      Good          17           25           37           25          104  

 Excellent          61           52           32           47          192  

     Total          94           86           97           88          365  

 

 

 

 

EXPECTED FREQUENCIES with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.515        0.471        0.532        0.482  

      Poor       7.984        7.304        8.238        7.474  

      Fair       9.271        8.482        9.567        8.679  

      Good      26.784       24.504       27.638       25.074  

 Excellent      49.447       45.238       51.025       46.290  

 

 

 

 

ROW PROPORTIONS with    5 cases. 
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Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin        Total 

      None       0.000        0.500        0.000        0.500        1.000  

      Poor       0.194        0.097        0.581        0.129        1.000  

      Fair       0.278        0.139        0.278        0.306        1.000  

      Good       0.163        0.240        0.356        0.240        1.000  

 Excellent       0.318        0.271        0.167        0.245        1.000  

     Total       0.258        0.236        0.266        0.241        1.000  

 

 

 

 

COLUMN PROPORTIONS with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin        Total 

      None       0.000        0.012        0.000        0.011        0.005  

      Poor       0.064        0.035        0.186        0.045        0.085  

      Fair       0.106        0.058        0.103        0.125        0.099  

      Good       0.181        0.291        0.381        0.284        0.285  

 Excellent       0.649        0.605        0.330        0.534        0.526  

     Total       1.000        1.000        1.000        1.000        1.000  

 

 

 

 

CHI-SQUARED VALUE FOR CELLS with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.515        0.593        0.532        0.556  

      Poor       0.493        2.536       11.567        1.615  

      Fair       0.057        1.430        0.020        0.620  

      Good       3.574        0.010        3.171        0.000  

 Excellent       2.700        1.011        7.093        0.011  

 

 

 

 

Chi-square =   38.103 with D.F. = 12. Prob. > value =    0.000 

 

Liklihood Ratio =   38.318 with prob. > value = 0.0001 

 

phi correlation = 0.3231 

 

Pearson Correlation r = -0.1158 

 

Mantel-Haenszel Test of Linear Association =    4.884 with probability > value = 0.0271 

 

The coefficient of contingency =    0.307 

 

Cramers V =    0.187 

ANALYSIS FOR STANDARD Ibuprofen_low 

 

 

Frequencies Observed 

 

 

                        Frequencies 

Variables 

         Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None           0            1            0            1  

      Poor           6            3           18            4  

      Fair          10            5           10           11  

      Good          17           25           37           25  

 Excellent          61           52           32           47  

 

 

 

 

Column Proportions Observed with    5 cases. 
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Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.000        0.012        0.000        0.011  

      Poor       0.064        0.035        0.186        0.045  

      Fair       0.106        0.058        0.103        0.125  

      Good       0.181        0.291        0.381        0.284  

 Excellent       0.649        0.605        0.330        0.534  

 

 

 

 

Ridit calculations for Ibuprofen_low with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.000        0.000        0.000        0.000  

      Poor       0.064        0.032        0.000        0.032  

      Fair       0.106        0.053        0.064        0.117  

      Good       0.181        0.090        0.170        0.261  

 Excellent       0.649        0.324        0.351        0.676  

 

 

 

 

Ridit calculations for Ibuprofen_Hi with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.012        0.006        0.000        0.006  

      Poor       0.035        0.017        0.012        0.029  

      Fair       0.058        0.029        0.047        0.076  

      Good       0.291        0.145        0.105        0.250  

 Excellent       0.605        0.302        0.395        0.698  

 

 

 

 

Ridit calculations for Placebo with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.000        0.000        0.000        0.000  

      Poor       0.186        0.093        0.000        0.093  

      Fair       0.103        0.052        0.186        0.237  

      Good       0.381        0.191        0.289        0.479  

 Excellent       0.330        0.165        0.670        0.835  

 

 

 

 

Ridit calculations for Aspirin with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.011        0.006        0.000        0.006  

      Poor       0.045        0.023        0.011        0.034  

      Fair       0.125        0.063        0.057        0.119  

      Good       0.284        0.142        0.182        0.324  

 Excellent       0.534        0.267        0.466        0.733  

 

 

 

 

Ridits for all variables with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 
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      None       0.000        0.006        0.000        0.006  

      Poor       0.032        0.029        0.093        0.034  

      Fair       0.117        0.076        0.237        0.119  

      Good       0.261        0.250        0.479        0.324  

 Excellent       0.676        0.698        0.835        0.733  

 

 

 

 

Mean RIDITS Using the Reference Values with    5 valid cases. 

 

VariablesIbuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

                 0.500        0.492        0.340        0.451  

 

Overall mean for RIDITS in non-reference groups :=   0.4244 

Chisquared :=   27.695 with probability <   0.0000 

 

z critical ratios with    5 valid cases. 

 

VariablesIbuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

                 0.000       -0.182       -3.823       -1.146  

 

significance level used for comparisons :=    2.394 

Ibuprofen_Hi vs Ibuprofen_low not significant 

Placebo vs Ibuprofen_low significant 

Aspirin vs Ibuprofen_low not significant 

ANALYSIS FOR STANDARD Ibuprofen_Hi 

 

 

Frequencies Observed 

 

 

                        Frequencies 

Variables 

         Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None           0            1            0            1  

      Poor           6            3           18            4  

      Fair          10            5           10           11  

      Good          17           25           37           25  

 Excellent          61           52           32           47  

 

 

 

 

Column Proportions Observed with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.000        0.012        0.000        0.011  

      Poor       0.064        0.035        0.186        0.045  

      Fair       0.106        0.058        0.103        0.125  

      Good       0.181        0.291        0.381        0.284  

 Excellent       0.649        0.605        0.330        0.534  

 

 

 

 

Ridit calculations for Ibuprofen_low with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.000        0.000        0.000        0.000  

      Poor       0.064        0.032        0.000        0.032  

      Fair       0.106        0.053        0.064        0.117  

      Good       0.181        0.090        0.170        0.261  

 Excellent       0.649        0.324        0.351        0.676  

 

 

 

 

Ridit calculations for Ibuprofen_Hi with    5 cases. 
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Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.012        0.006        0.000        0.006  

      Poor       0.035        0.017        0.012        0.029  

      Fair       0.058        0.029        0.047        0.076  

      Good       0.291        0.145        0.105        0.250  

 Excellent       0.605        0.302        0.395        0.698  

 

 

 

 

Ridit calculations for Placebo with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.000        0.000        0.000        0.000  

      Poor       0.186        0.093        0.000        0.093  

      Fair       0.103        0.052        0.186        0.237  

      Good       0.381        0.191        0.289        0.479  

 Excellent       0.330        0.165        0.670        0.835  

 

 

 

 

Ridit calculations for Aspirin with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.011        0.006        0.000        0.006  

      Poor       0.045        0.023        0.011        0.034  

      Fair       0.125        0.063        0.057        0.119  

      Good       0.284        0.142        0.182        0.324  

 Excellent       0.534        0.267        0.466        0.733  

 

 

 

 

Ridits for all variables with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.000        0.006        0.000        0.006  

      Poor       0.032        0.029        0.093        0.034  

      Fair       0.117        0.076        0.237        0.119  

      Good       0.261        0.250        0.479        0.324  

 Excellent       0.676        0.698        0.835        0.733  

 

 

 

 

Mean RIDITS Using the Reference Values with    5 valid cases. 

 

VariablesIbuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

                 0.508        0.500        0.339        0.454  

 

Overall mean for RIDITS in non-reference groups :=   0.4322 

Chisquared :=   28.613 with probability <   0.0000 

 

z critical ratios with    5 valid cases. 

 

VariablesIbuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

                 0.182        0.000       -3.772       -1.040  

 

significance level used for comparisons :=    2.394 

Ibuprofen_low vs Ibuprofen_Hi not significant 

Placebo vs Ibuprofen_Hi significant 

Aspirin vs Ibuprofen_Hi not significant 

ANALYSIS FOR STANDARD Placebo 
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Frequencies Observed 

 

 

                        Frequencies 

Variables 

         Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None           0            1            0            1  

      Poor           6            3           18            4  

      Fair          10            5           10           11  

      Good          17           25           37           25  

 Excellent          61           52           32           47  

 

 

 

 

Column Proportions Observed with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.000        0.012        0.000        0.011  

      Poor       0.064        0.035        0.186        0.045  

      Fair       0.106        0.058        0.103        0.125  

      Good       0.181        0.291        0.381        0.284  

 Excellent       0.649        0.605        0.330        0.534  

 

 

 

 

Ridit calculations for Ibuprofen_low with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.000        0.000        0.000        0.000  

      Poor       0.064        0.032        0.000        0.032  

      Fair       0.106        0.053        0.064        0.117  

      Good       0.181        0.090        0.170        0.261  

 Excellent       0.649        0.324        0.351        0.676  

 

 

 

 

Ridit calculations for Ibuprofen_Hi with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.012        0.006        0.000        0.006  

      Poor       0.035        0.017        0.012        0.029  

      Fair       0.058        0.029        0.047        0.076  

      Good       0.291        0.145        0.105        0.250  

 Excellent       0.605        0.302        0.395        0.698  

 

 

 

 

Ridit calculations for Placebo with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.000        0.000        0.000        0.000  

      Poor       0.186        0.093        0.000        0.093  

      Fair       0.103        0.052        0.186        0.237  

      Good       0.381        0.191        0.289        0.479  

 Excellent       0.330        0.165        0.670        0.835  

 

 

 

 

Ridit calculations for Aspirin with    5 cases. 
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Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.011        0.006        0.000        0.006  

      Poor       0.045        0.023        0.011        0.034  

      Fair       0.125        0.063        0.057        0.119  

      Good       0.284        0.142        0.182        0.324  

 Excellent       0.534        0.267        0.466        0.733  

 

 

 

 

Ridits for all variables with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.000        0.006        0.000        0.006  

      Poor       0.032        0.029        0.093        0.034  

      Fair       0.117        0.076        0.237        0.119  

      Good       0.261        0.250        0.479        0.324  

 Excellent       0.676        0.698        0.835        0.733  

 

 

 

 

Mean RIDITS Using the Reference Values with    5 valid cases. 

 

VariablesIbuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

                 0.660        0.661        0.500        0.616  

 

Overall mean for RIDITS in non-reference groups :=   0.6459 

Chisquared :=   53.073 with probability <   0.0000 

 

z critical ratios with    5 valid cases. 

 

VariablesIbuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

                 3.823        3.772        0.000        2.730  

 

significance level used for comparisons :=    2.394 

Ibuprofen_low vs Placebo significant 

Ibuprofen_Hi vs Placebo significant 

Aspirin vs Placebo significant 

ANALYSIS FOR STANDARD Aspirin 

 

 

Frequencies Observed 

 

 

                        Frequencies 

Variables 

         Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None           0            1            0            1  

      Poor           6            3           18            4  

      Fair          10            5           10           11  

      Good          17           25           37           25  

 Excellent          61           52           32           47  

 

 

 

 

Column Proportions Observed with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.000        0.012        0.000        0.011  

      Poor       0.064        0.035        0.186        0.045  

      Fair       0.106        0.058        0.103        0.125  

      Good       0.181        0.291        0.381        0.284  

 Excellent       0.649        0.605        0.330        0.534  
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Ridit calculations for Ibuprofen_low with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.000        0.000        0.000        0.000  

      Poor       0.064        0.032        0.000        0.032  

      Fair       0.106        0.053        0.064        0.117  

      Good       0.181        0.090        0.170        0.261  

 Excellent       0.649        0.324        0.351        0.676  

 

 

 

 

Ridit calculations for Ibuprofen_Hi with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.012        0.006        0.000        0.006  

      Poor       0.035        0.017        0.012        0.029  

      Fair       0.058        0.029        0.047        0.076  

      Good       0.291        0.145        0.105        0.250  

 Excellent       0.605        0.302        0.395        0.698  

 

 

 

 

Ridit calculations for Placebo with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.000        0.000        0.000        0.000  

      Poor       0.186        0.093        0.000        0.093  

      Fair       0.103        0.052        0.186        0.237  

      Good       0.381        0.191        0.289        0.479  

 Excellent       0.330        0.165        0.670        0.835  

 

 

 

 

Ridit calculations for Aspirin with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.011        0.006        0.000        0.006  

      Poor       0.045        0.023        0.011        0.034  

      Fair       0.125        0.063        0.057        0.119  

      Good       0.284        0.142        0.182        0.324  

 Excellent       0.534        0.267        0.466        0.733  

 

 

 

 

Ridits for all variables with    5 cases. 

 

 

Variables 

          Ibuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

      None       0.000        0.006        0.000        0.006  

      Poor       0.032        0.029        0.093        0.034  

      Fair       0.117        0.076        0.237        0.119  

      Good       0.261        0.250        0.479        0.324  

 Excellent       0.676        0.698        0.835        0.733  

 

 

 

 

Mean RIDITS Using the Reference Values with    5 valid cases. 

 

VariablesIbuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

                 0.549        0.546        0.384        0.500  
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Overall mean for RIDITS in non-reference groups :=   0.4902 

Chisquared :=   20.447 with probability <   0.0001 

 

z critical ratios with    5 valid cases. 

 

VariablesIbuprofen_low Ibuprofen_Hi      Placebo      Aspirin 

                 1.146        1.040       -2.730        0.000  

 

significance level used for comparisons :=    2.394 

Ibuprofen_low vs Aspirin not significant 

Ibuprofen_Hi vs Aspirin not significant 

Placebo vs Aspirin significant 

 

 Notice that we chose to let each group be the comparison standard.  This permitted comparisons among 

each of the groups.  Typically however one would select only one group as a standard with which to compare to the 

other groups.  If “aspirin” was the standard comparison group, only the “placebo” treatment group was significantly 

different. 

 

Scheirer-Ray-Hare Test 

 

 The SRH-Test is similar to a two-way analysis of variance but may be utilized when the dependent variable 

is ordinal, for example, ranks rather than in interval or ratio measurement.  The sums of squared deviations are 

computed in the same manner as the regular anova but the tests are NOT based on the ratio with the error term.  The 

sums of squares for the two factors and their interaction term are divided by the mean square for the total.  The 

resulting statistic is labeled “H” and the probability is obtained using the chi-squared test with the degrees of 

freedom corresponding to the factor or interaction terms.  As is often the case with non-parametric tests, the power 

to detect the alternate hypotheses is lower than for equivalent parametric tests. 

 

 The output obtained is that of the traditional parametric two-way anova but with the addition of the H and 

probability of a greater H.  By this means you can see that the power is less than the traditional anova.  As an 

interesting experiment, take a set of data for the traditional two-way anova, transform the dependent variable using 

the “transform” option under the Variables menu, and compare the analysis of the original data with the Block 

ANOVA procedure and the ranked data with the SRH-Test. 

 

 

Median Polishing 

 
Median polish is a technique invented by J. W. Tukey (see Tukey [1, p. 366]) for extracting row and column effects in a two-way 

data layout using medians rather than arithmetic means, and therefore possessing the good robustness properties held by other 

medianlike procedures.  For a good explanation and examples, see Velleman and Hoaglin [2, Chap. 8]. 

 

METHOD  Add to the two-way layout a column of row effects and a row of column effects, both initially all zeros, and a single 

overall effect term.  In every row (including the row of column effects), subtract the row median from all entries and add the row 

median to the row effect. Operate similarly on columns instead of rows, then return to operate on rows, then columns, . . ., etc.  

The procedure terminates when the twoway layout of residuals has zero median in every row and column, and where the row and 

column effects each have median zero.  Thus, if xij is the entry in row i, column j, if rij is the corresponding residual, μ the overall 

effect, αi the ith row effect, and βj the jth column effect, then xij = μ + αi + βj + rij, with mediani(αi) = 0 = medianj(βj), and 

mediani(rij) = 0 = medianj(rij), all i, j. This decomposition is completely analogous to that in two-way analysis of variance∗  

(ANOVA), using medians instead of means. Note that: (i) The method is nonunique.  Starting by operating on columns rather 

than rows may lead to a different (but qualitatively similar) answer.  (ii) Instead of terminating in a finite number of steps, the 

iterations might converge geometrically to the solution. 
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Chapter 9. Statistical Process Control 

Introduction 

 

 Statistical Process Control (SPC) has become a major factor in the reduction of manufacturing process 

errors over the past years.  Sometimes known as the Demming methods for the person that introduced them to Japan 

and then the United States, they have become necessary tools in quality control processes.  Since many of the 

employees in the manufacturing area have limited background in statistics, a large dependency has been built on the 

creation of charts and their interpretation.  The statistics which underlay these charts are often those we have 

introduced in previous sections.  The unique aspect of SPC is in the presentation of data in the charts themselves. 

XBAR Chart 

 

 In quality control, observations are typically made in “lots”, that is, a number of observations are made on 

some product’s manufacturing process or the product itself at periodic intervals.  For example, in the manufacture of 

metal bolts, the length of bolts being turned out may be sampled each hour of the day.  The means and standard 

deviation of these sample lots may then be calculated and plotted with lines drawn to show the overall mean and 

upper and lower “control limits” indicating whether or not a process may be “out of control”.  One area of confusion 

which exists is the language used by industrial people in indicating their level of process control.  You may hear the 

expression that “we employ control to 6 sigmas.”  They do not mean they use 6 standard deviations as their upper 

and lower control limits but rather that the probability of being out of control is that associated with the normal 

curve probability of a value being 6 standard deviations or greater (a very small value.)  This confusion of standard 

deviations (sigmas) and the probability associated with departures from the mean under the normal distribution 

assumption is unfortunate.  When you select the sigma values for control limits, the limits for 1 sigma are much 

closer to the mean that for 3 sigma.  You may, of course, select your own limits that you feel are practical for your 

process control.  Since variation in raw materials, tool wear, shut-down costs for replacement of worn tool parts, etc. 

may be beyond your control, limits must be set that maximize quality and minimize costs. 

 

Range Chart 

 

As tools wear the products produced may begin to vary more and more widely around the values specified for them.  

The mean of a sample may still be close to the specified value but the range of values observed may increase.  The 

result is that more and more parts produced may be under or over the specified value.  Therefore quality assurance 

personnel examine not only the mean (XBAR chart) but also the range of values in their sample lots. 

 

S Control Chart 

 

 The sample standard deviation, like the range, is also an indicator of how much values vary in a sample.  

While the range reflects the difference between largest and smallest values in a sample, the standard deviation 

reflects the square root of the average squared distance around the mean of the values.  We desire to reduce this 

variability in our processes so as to produce products as similar to one another as is possible.  The S control chart 

plot the standard deviations of our sample lots and allows us to see the impact of adjustments and improvements in 

our manufacturing processes. 

 

CUSUM Chart 

 

 The cumulative sum chart, unlike the previously discussed SPC charts (Shewart charts) reflects the results 

of all of the samples rather than single sample values.  It plots the cumulative sum of deviations from the mean or 

nominal specified value.  If a process is going out of control, the sum will progressively go more positive or 

negative across the samples.  If there are M samples, the cumulative sum S is given as 
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                M   _                        _ 

          S = Σ ( Xi - μo)   Where Xi is the observed sample mean and μo is the nominal value or (overall mean.) 

               i=1 

 

It is often desirable to draw some boundaries to indicate when a process is out of control.  By convention we use a 

standardized difference to specify this value.  For example with the boltsize.txt data, we might specify that we wish 

to be sensitive to a difference of 0.02 from the mean.  To standardize this value we obtain 

 

        0.02  

δ = ----------- 

         σx 

 

or using our sample values as estimates obtain 

 0.02        0.02 

           δ = ------ = -------   = 0.0557 

      Sx            0.359 

 

A “V Mask” is then drawn starting at a distance “d” from the last cumulative sum value with an angle θ back toward 

the first sample deviation.  In order to calculate the distance d we need to know the probabilities of a Type I and 

-of-control has taken place and the 

ct an out-of-control condition.  If these values are specified then we can obtain the 

distance d as 

 

                     2           1 - β 

             d = (----) ln (---------) 

                     δ
2
            α 

 

When you run the CUSUM procedure you will note that the alpha and beta error rates have been set to default 

values of 0.05 and 0.20.  This would imply that an error of the first type (concluding out-of-control when in fact it is 

not) is a more “expense” error than concluding that the process is in control when in fact it is not.  Depending on the 

cost of shut-down and correction of the process versus scraping of parts out of tolerance, you may wish to adjust 

these default values. 

 

The angle of the V mask is obtained by 

 

                   α 

 θ = tan
-1

(----) 

                  2k 

 

where k is a scaling factor typically obtained as k = 2 σx 

 

 The specification form for the CUSUM chart is shown below for the data file labeled boltsize.txt.  We have 

specified our desire to detect shifts of 0.02 in the process and are using the 0.05 and 0.20 probabilities for the two 

types of errors. 

 

p Chart 

 

 In some quality control processes the measure is a binomial variable indicating the presence or absence of a 

defect in the product.  In an automated production environment, there may be continuous measurement of the 

product and a “tagging” of the product which is non-conforming to specifications.  Due to variation in materials, 

tool wear, personnel operations, etc. one may expect that a certain proportion of the products will have defects.  The 

p Chart plots the proportion of defects in samples of the same size and indicates by means of upper and lower 

control limits, those samples which may indicate a problem in the process. 
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Defect (Non-conformity) c Chart 

 

 The previous section discusses the proportion of defects in samples (p Chart.)  This section examines 

another defect process in which there is a count of defects in a sample lot.  In this chart it is assumed that the 

occurrence of defects are independent, that is, the occurrence of a defect in one lot is unrelated to the occurrence in 

another lot.  It is expected that the count of defects is quite small compared to the total number of parts potentially 

defective.  For example, in the production of light bulbs, it is expected that in a sample of 1000 bulbs, only a few 

would be defective.  The underlying assumed distribution model for the count chart is the Poisson distribution where 

the mean and variance of the counts are equal. 

 

Defects Per Unit u Chart 

 

 Like the count of defects c Chart described in the previous section, the u Chart describes the number of 

defects per unit.  It is assumed that the number of units observed is the same for all samples.  We will use the file 

labeled uChart.txt as our example.  In this set of data, 25 observations of defects for 45 units each are recorded.  The 

assumption is that defects are distributed as a Poisson distribution with the mean given as 

 

          _       Σ c 

          u = ---------   where c is the count of defects and n is the number of units observed. 

                  Σ n 

 

and                                      ____                                                ___ 

                                           /_                                                    / _ 

                      _                 /  u                                _                /   u 

          UCL = u + sigma / ------           and LCL = u  - sigma / -------- 

                                    √      n                                               √    n 
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Chapter 10. Linear Programming 

Introduction 

 

 Linear programming is a subset of a larger area of application called mathematical programming.  The 

purpose of this area is to provide a means by which a person may find an optimal solution for a problem involving 

objects or processes with fixed 'costs' (e.g. money, time, resources) and one or more 'constraints' imposed on the 

objects.  As an example, consider the situation where a manufacturer wishes to produce 100 pounds of an alloy 

which is 83% lead, 14% iron and 3% antimony.  Assume he has at his disposal, five existing alloys with the 

following characteristics: 

 

Alloy1 Alloy2 Alloy3 Alloy4 Alloy5 Characteristic 

90 80 95 70 30 Lead 

5 5 2 30 70 Iron 

5 15 3 0 0 Antimony 

$6.13 $7.12 $5.85 $4.57 $3.96 Cost 

 

This problem results in the following system of equations: 

 

 X1 + X2 + X3 + X4 + X5 = 100 

       0.90X1 +      0.80X2 +     0.95X3 +      0.70X4 +     0.30X5 =   83 

       0.05X1 +      0.05X2 +     0.02X3 +      0.30X4 +     0.70X5 =   14 

       0.05X1 +      0.15X2 +     0.03X3     =     3 

       6.13X1 +      7.12X2 +     5.85X3 +      4.57X4 +     3.96X5 = Z(min) 

 

The last equation is known as the 'objective' equation.  The first four are constraints.  We wish to obtain the 

coefficients of the X objects that will provide the minimal costs and result in the desired composition of metals.  We 

could try various combinations of the alloys to obtain the desired mixture and then calculate the price of the 

resulting alloy but this could take a very long time! 

 

 As another example: a dietitian is preparing a mixed diet consisting of three ingredients, food A, B and C. 

Food A contains 81.85 grams of protein and 13.61 grams of fat and costs 30 cents per unit. Each unit of food B 

contains 58.97 grams of protein and 13.61 grams of fat and costs 40 cents per unit. Food C contains 68.04 grams of 

protein and 4.54 grams of fat and costs 50 cents per unit. The diet being prepared must contain the at least 100 

grams of protein and at the most 20 grams of fat. Also, because food C contains a compound that is important for the 

taste of the diet, there must be exactly 0.5 units of food C in the mix. Because food A contains a vitamin that needs 

to be included, there should also be a minimum of 0.1 units of food A in the diet. Food B contains a compound that 

may be poisonous when taken in large quantities, and the diet may contain a maximum of 0.7 units of food B. How 

many units of each food should be used in the diet so that all of the minimal requirements are satisfied, the 

maximum allowances are not violated, and we have a diet which cost is minimal? To make the problem a little bit 

easier, we put all the information of the problem in a tableau, which makes the formulation easier.  

 

               Protein Fat Cost Minimum Maximum Equal  

Food A 81.65 13.60 $0.30 0.10    

Food B 58.97 13.60 $0.40   0.70   

Food C 68.04 4.54 $0.50     0.50  

        

Min. 100       

Max.  20      

        

The numbers in the tableau represent the number of grams of either protein and fat contained in each unit of food. 

For example, the 13.61 at the intersection of the row labelled "Food A" and the column labelled "Fat" means that 

each unit of food A contains 13.61 grams of fat.  



Statistics and Measurement Concepts for LazStats   William G. Miller ©2012 

 

 353 

Calculation 

 

We must include 0.5 units of food C, which means that we include 0.5 * 4.54 = 2.27 grams of fat and 0.5 * 68.04 = 

34.02 grams of protein in the diet, coming from food C. This means, that we have to get 100 - 34.02 = 65.98 grams 

of protein or more from Food A and B, and that we may include a maximum of 20 - 2.27 = 17.73 grams of fat from 

food A and B. We have to include a minimum of 0.1 units of food A in the diet, accounting for 8.17 grams of 

protein and 0.45 grams of fat. This means that we still have to include 65.98 - 8.17 = 57.81 grams of protein from 

food A and/or B, and that the maximum allowance for fat from A and/or B is now 17.73 - 0.45 = 17.28 grams. We 

should first look at the cheapest possibility, eg inclusion of food A for the extra required 57.81 grams of protein. If 

we include 57.81/81.65 = 0.708 units of food A, we have met the requirement for protein, and we have added 0.708 

* 13.61 = 9.64 grams of fat, which is below the allowance of 17.28 grams which had remained. So we don't need 

any of the food B, which is more expensive, and which is contains less protein. The price of the diet is now $0.48. 

But what would we do, if food B was available at a lower price? We may or may not want to use B as an ingredient. 

The more interesting question is, at what price would it be interesting to use B as an ingredient insteaed of A? This 

could be approached by an iterative procedure, by choosing a low price for B, and see if the price for the diet would 

become less than the calculated price of $0.48.  

 

Implementation in Simplex 

 

A more sophisticated approach to these problems would be to use the Simplex method to solve the linear program. 

The sub-program 'Linear Programming', provided with LazStats can be used to enter the parameters for these 

problems in order to solve them. 
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Chapter11. MEASUREMENT 
 

 Evaluators base their evaluations on information.  This information comes from a number of sources such 

as financial records, production cost estimates, sales records, state legal code books, etc.  Frequently the evaluator 

must collect additional data using instruments that he or she alone has developed or acquired from external sources.  

This is often the case for the evaluation of training and educational programs, evaluation of personnel policies and 

their impacts, evaluation of social and psychological environments of the workplace, and the evaluation of proposed 

changes in the way people do business or work. 

 This chapter will give guidance in the development of instruments for making observations in the cognitive 

and affective domains of human behavior. 

 

Test Theory 

 

 The sections presented below provide a detailed discussion of testing theory.  You do not need to 

understand all of this theory to make appropriate use of tests in your evaluations, although it may help in avoiding 

some errors in decisions or selecting appropriate analytic tools.  It is included for the “advanced” student of 

evaluation who is responsible as an “expert” in assisting other evaluators in correctly using and analyzing tests.  If 

you are “afraid” of statistics, you may skip the formal “proofs” of the equations and focus primarily on the resulting 

equations. 

Scales of Measurement 

 

 Measurement is the assignment of a label or number to an object or person to characterize that individual 

on the basis of an observed attribute.  The manner in which we make our observations will determine our "scale of 

measurement". 

Nominal Scales 

 

 Sometimes we observe an attribute in such a way that we can only classify an individual or object as 

possessing or not possessing the attribute.  For example, the variable "gender" may be observed in such a way as to 

permit only labeling an individual as "male" or not male (female).  The attribute of "country of origin" may lead us 

to classify individuals by their place of birth such as "USA", "Canada", "European", etc.  The assignment of labels 

or names to objects based on a specific attribute is called a NOMINAL scale of measurement.  We can, of course, 

arbitrarily select the labels to assign the observed individuals.  Letters such as "A", "B", "C", etc. might be used or 

even numbers such as "1", "2", "3", etc.  Notice, however that the use of numbers as labels may cause some 

confusion with the use of numbers to indicate a quantity of some attribute.  When using a nominal scale of 

measurement, there is no attempt to indicate quantity.  Coding males as 1 and females as 0, for example, would not 

indicate males are "greater" on some quantitative variable - we might just as well have assigned 1 to females and 0 

to males! 

 

Ordinal Scales of Measurement 

 

 Some attributes of individuals or objects may be observed in such a way that the individuals may be 

ordered, that is, arranged in a manner that indicates person "B" possesses more of the attribute than person "A", but 

less than person "C".  For example, the number of correctly answered items on a test may permit us to say that John 

has a higher score than Mary but a lower score than Jim.  (NOTE! We carefully avoided saying that John knows 

more than Mary but knows less than Jim.  Such statements imply a direct relationship between the amount of 

knowledge of a subject and the number of items passed.  This is virtually never the case!)  When we assign numbers 

that only indicate the ordering of individuals on some attribute, our scale of measurement is called an ordinal scale.  
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We will add that comparing the means of groups measured with an ordinal scale leads to serious problems of 

interpretation.  The median, on the other hand, is more interpretable. 

 

Interval Scales of Measurement 

 

 There is a class of measurements known as interval scales of measurement.  These refer to observing an 

attribute of individuals in such a way that the numbers assigned to individuals denote the relative amount of the 

attribute possessed by that individual in comparison to some "standard" or referent.  The assignment of numbers in 

this way would permit a transformation (such as multiplying all numbers by a constant) that would preserve the 

proportional distance among the individuals.  The numbers assigned do not indicate the absolute amount of the 

attribute - only the amount relative to the standard.  For example, we might say that the average number of questions 

answered correctly on a test of 100 items measuring recall of nonsense words by a very large population of 18 year 

old males constitutes our "standard".  IF all items are equally difficult to recall, we might use the proportion of the 

standard number of items recalled as an interval measure of recall ability.  That is, the difference between Mary who 

obtains a score of 20 and John who receives a score of 40 is proportional to the difference between John and Jim 

who receives a score of 60. Even if we multiply their scores by 100, the distance between Mary, John and Jim is 

proportionally the same!  Again note that the proportion of the standard number of items correctly recalled is NOT a 

measure of individual's ability to recall items in general.  It is only their ability to recall the carefully selected items 

of this test in comparison to the standard that is measured.  A different set of items could lead to assignment of a 

completely different set of numbers to each individual with different relative distances among the individuals.  As 

another example, consider a measure of individual "wealth".  Assume wealth is defined as the total of a persons 

debts and credits using the standard "dollar".  We may clearly have individuals with negative "wealth" (debts exceed 

credits) and individuals with "positive" wealth (credits exceed debts).  Our wealth scale has equal intervals (dollars).  

We can make statements such as John has 20 dollars more wealth than Mary but five dollars less wealth than Jim.  

In other words, we can represent the distance among our individuals as well as their order.  Note, however, that an 

individual with a wealth score of zero (debts = assets) is NOT broke, that is, have an absence of wealth.  With an 

interval scale of measurement 0.0 does NOT mean an absence of the attribute - only a relative amount compared to 

the "standard".  Zero is an arbitrary point  on our scale of measurement: 

 

 

 

 
                    Personal Wealth 

 

          "Mary"         "John"          "JIM" 

           __________________________________ 

           -10        0        +10       +15 

                    dollars 

 

 If a test of, say, 20 history items consists of items that are equally increasing in difficulty, we may use such 

a test to indicate the distance among subjects administered the test.  We do, however, require that if an individual 

misses an item with known difficulty dj, that the same individual will miss all items of greater difficulty! Please note 

that missing all items does not mean an absence of knowledge! (We might have included easier items.)  We may 

also have assigned "scores" to our subjects as X = the number of items "passed" - the number of items "missed".  

Again, the zero point on our scale is arbitrary and does not reflect an actual amount of knowledge or absence of 

knowledge!  Tests of intelligence, achievement or aptitude may be constructed that utilize an interval scale of 

measurement.  Like the value of a "dollar", the "difficulty" of each item must be clearly defined.  We can say, for 

example, that $100.00 buys an ounce of silver.  We might similarly define an item of difficulty 1.0 as that item 

which is correctly answered by 50% of 18 year old male freshmen college students residing in the USA in 1988. 

 

Ratio Scales of Measurement 

 

 We may sometimes observe an attribute of an individual or object in such a way that the numeric values 

assigned the individuals indicate the actual amount of the attribute. 
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 For example, we might measure the time delay between the occurrence of a stimulus (e.g. the flash of a 

strobe light) and the observation on the surface of the brain of a change in electrical potential representing response 

to the stimulus.  Such an observed latency may theoretically vary from 0 to infinity in whatever units of time (e.g. 

microseconds) that we wish to utilize.  We could then make statements such as John's latency is twice as long as 

Mary's latency but half as long as Jim's latency.  Note that a zero latency is meaningful and not an arbitrary point on 

the scale!  Another example of a ratio scale of measurement is the distance, perhaps in inches, that a person can 

jump.  In each case, the ratio scale of measurement has a "true" zero point on the scale which can be interpreted as 

an absence of the attribute.  In addition, the ratio scale permits forming meaningful ratios of subject's scores.  For 

example we might say that John can jump twice as far as Mary but Jim (who is in a wheelchair) can not jump at all!     

Could we ever construct a test of intelligence that yielded ratio scale numbers?  What would a statement that Mary is 

twice as intelligent as John but half as intelligent as Jim mean?  What would a score of zero intelligence mean? 

What would a score of 1.0 mean?     Clearly, it is difficult, if not nearly impossible to construct ratio scale measures 

for attributes that we cannot directly observe and for which we have no meaningful "standard" with which to relate.  

We may, in fact, be hard-pressed to provide evidence that our psychological and educational measurement scales are 

even interval scales.  Many are clearly only ordinal measures at best. 

 

Reliability, Validity and Precision of Measurement 

Reliability 

 

 If we stepped on and off our weight scale and each time received a different reading for our weight, we 

would probably go out and buy a new scale!  We would say we want a reliable scale - one that consistently yields 

the same weight for the same object measured.  When we refer to tests, the ability of a test to produce the same 

values when used to measure the same subjects is also called the reliability of the test.  If we carefully examine the 

"markings" on our weight scale however, we might be surprised that there are, in fact, some variations in the values 

we could record.  Sometimes I might weight 150.3 and the next time I get on the scale I observe 150.2.  Did the 

scale actually give different values or was I only able to interpret the distance between the marks for 150 and 151 

approximately and therefore introduce some "error" or variation in the values recorded?  This lack of sufficient "in-

between" markings on our scale is referred to as the precision of our measurement.  If the scale is only marked in 

whole pounds, my precision of observation is limited to whole pounds.  In fact, when the scale appears right in 

between 150 and 151, is the closest value 150 or 151?  My error of precision is potentially 1 pound.  Note that 

precision is NOT the same as reliability.  When we speak of reliability, we are speaking of variations in repeated 

observations that are larger than those due to the precision of measurement alone. 

 

 In describing the reliability of an instrument, it is advantageous to have an index which describes the 

degree of reliability of the instrument.  One popular index of reliability is the product-moment correlation between 

two applications of the measurement instrument to a group of individuals.  For example, I might administer a history 

test to a group of students at 10:00 A.M. and again at 2:00 P.M.  Assuming the students did not talk with each other 

about the test, study history during the intervening time, forget relevant history material during those four hours, 

etc., then the correlation between their 10:00 A.M. and 2:00 P.M. scores would estimate the reliability of the test.  

Our index of reliability can vary between zero (no reliability) to 1.0 (perfect reliability).  Note that a reliability of 

less than zero is nonsense - a test cannot theoretically be less than completely unreliable! 

 

 We may also express this index of reliability as the ratio of "True Score" variance to "Observed Score 

Variance", that is St
2
 / Sx

2
 .  We will denote this ratio as rxx.  This choice of rxx is not capricious - we use the symbol 

for correlation to indicate that reliability is estimated by a product-moment correlation coefficient.  The xx subscript 

denotes a correlation of a measure with itself.  Each observed score (X) for an individual may be assumed to consist 

of two parts, a TRUE score (T) and an ERROR (E) score, i.e., Xi = Ti + Ei.  For N individuals, the variance of the 

observed scores is 

 

                        N                   _____    2 

                       Σ [(Ti + Ei) - (Ti + Ei)] 

       Sx
2
 =       i=1 ________________ 

                             (N-1) 

 

or 
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                        N                _    _ 2 

                       Σ [Ti + Ei  - T - E] 

       Sx
2
 =       i=1 _____________ 

                             (N-1) 

 

or 

 

                        N          _              _  2 

                       Σ [(Ti - Ti) + (Ei - E)] 

       Sx
2
 =       i=1 _____________       (11.1) 

                             (N-1) 

 

 

If we assume that error scores (E) are normally and randomly distributed with a mean of zero and, since they are 

random, uncorrelated with other scores, then 

 

 

                              N          _           2 

                              Σ [(Ti - T) + Ei] 

         Sx
2
 =             i=1_______________ 

                                        (N-1) 

 

              N       _ 2                        _ 

              Σ[(Ti-T) + Ei
2
 + (EiTi-EiT)] 

         =   i=1__________________________      (11.2) 

                      (N-1) 

 

                N         _ 2         N                  N             _ 

                 Σ (Ti - T)          Σ    Ei
2
           Σ  Ei (Ti - T) 

           =   i=1 _____   +   i=1 _____+    i=1 _______ 

                 (N-1)                 (N-1)                (N-1) 

 

        =   St
2
 + Se

2
 + Covte / (N-1) 

 

  =  St
2
 + Se

2
 + Covte / (N-1) * (StSe)/(StSe) 

 

  = St
2
 + Se

2
 + rteStSe 

 

            =   St
2
 + Se

2 
  since the correlation of errors with true scores is zero. 

 

Reliability is defined as 

 

 

                      St
2
             Sx

2
 - Se

2 
              1  -  Se

2
 

          rxx =  _____ =     ___________  =     _________     (11.3) 

                      Sx
2  

               Sx
2
                        Sx

2
 

 

 

 Because we cannot directly observe true scores, we must estimate them ( or the variance of error scores) by 

some method.  A variety of methods have been developed to estimate the reliability of a test.  We will describe, in 

this unit, the one known as the Kuder-Richardson Formula 20 estimate.  Other methods include the test-retest 

method, the corrected split-half method, the Cronbach Alpha method, etc. 

 

The Kuder - Richardson Formula 20 Reliability 
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 The K-R formula is based on the correlation between a test composed of K observed items and a theoretical 

(unobserved) parallel test of k items parallel to those of the observed test.  A parallel test or item is one which yields 

the same means, standard deviations and intercorrelations as the original ones. 

 

 To develop the K-R 20 formula, we will begin with the correlation between two tests composed of K and k 

items respectively where K = k.  The correlation between the total 

scores correct on each test is represented by 

 

               rI,II   where 

 

 Test I scores = the sum of item scores X1 + X2 +..+ XK 

 and  Test II scores= the sum of item scores x1 = x2 +..+ xk 

 

We may therefore write the correlation as 

 

     r      =  r 

      I,II      (X1+X2+..+XK),(x1+x2+..+xk) 

 

 

       N                        ________                        ______ 

         Σ [(X1 +..+XK)-(X1 +..+XK)][ (x1 +..+xk)-(x1 +..xk)] 

        i=1 

             = _______________________________________________  11.4) 

                                K                K     K 

                     N Σ   Sg
2
 + N Σ     Σ    rG,g SGSg       gG 

                            G=1            G=1 g=1 

 

The numerator of the above equation is the deviation cross-products of the total scores I and II.  The denominator 

represents the variance of the composite score I.  Since parallel tests have the same variance, we are assuming that 

the variance of test I equals that of test II.  For that reason, the variance of the composite test I or II can be expressed 

as the sum of individual item variances plus the covariance among the items.  The numerator of our correlation can 

be similarly expressed, that is 

 

                      K                         K     K 

             N Σ   rG,G SGSg + N Σ     Σrg,G SGSg       

                   G=1                     G=1 g=1 

     r   =  -----------------------------------------  g≠G 

      I,II           K               K      K 

             N Σ  Sg
2
  + N Σ      Σ rg,G Sg SG 

                               g=1            g=1 G=1 

 

 

which can be further reduce as follows: 

 

 

            K               K     K 

            Σ rg,g Sg
2
 + Σ     Σ  rg,G Sg SG 

           g=1           g=1 G=1 

  r     =  ____________________________ g≠G 

   I,II     K          K     K 

            ΣSg
2
   + Σ      Σ  rg,G Sg SG 

           g=1       g=1 G=1 
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            K              K         K          K    K 

            Σrg,g Sg
2
 - Σ Sg

2
 + Σ Sg

2
 + Σ     Σ   rg,G Sg SG 

           g=1          g=1      g=1       g=1 G=1 

  rI,II     =  ____________________________________________ 

        Sx
2
 

 

    K                K 

             Σ   rg,g Sg
2
 -  Σ  Sg

2
   +  Sx

2
 

  r      =  g=1             g=1 

   I,II    ____________________________      (11.5) 

                 Sx
2
 

 

 

Note!  rg,g represents the correlation between parallel test items. 

 

 In an observed test of K items we would not expect to have parallel items.  We must therefore estimate the 

correlation (or covariance) among parallel items by the correlation among non-parallel items.  That is 

 

                  K   K 
  

    Σ   Σ    rg,G Sg SG 

         K     g=1 G=1 

         Σ rg,g Sg
2
     = ________________ g≠G 

       g=1           ( K - 1) 

 

Note: There are K(K-1) pairings when g is not equal to G. 

 

Since 

                    K            K   K 

        Sx
2
  =   Σ  Sg

2
 +  Σ   Σ   rg,G Sg SG 

                   g=1     g=1  G=1 

then 

 

          K                             K 

          Σ rg,g Sg
       

=  (Sx
2 
 - Σ Sg

2
) / ( K-1) 

         g=1            g=1 

 

 

and 

 

                    K 

          Sx
2
 -  Σ  Sg

2
       K 

                  g=1        -  Σ Sg
2
 + Sx

2
 

          __________    g=1 

              K - 1 

  r   =      ___________________________ 

   I,II                Sx
2
 

 

 

                   K             K 

         Sx
2
 -  Σ Sg

2
         Σ Sg2 

                 g=1         g=1 

   =     ____________ -  ______    +  1 

           (K-1) Sx
2
           Sx

2
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                    K 

                    Σ Sg
2
 

                   g=1                        K 

                    _____         (K-1) Σ Sg
2 

       1            Sx
2 
                     g=1         K-1 

=  ____  - _________  -  ________  +  ___ 

     K-1         K-1                (K-1)Sx
2 
     K-1 

 

 

            K                K                    K 

                    Σ Sg
2
       K Σ  Sg

2
             Σ Sg

2
 

                  g=1             g=1                g=1 

 = [  1  ] [ 1 -         _____   -   _______   +   ______  +  K-1 ] 

    K - 1                    Sx
2
             Sx

2
                   Sx

2
 

 

 

                                   K 

                               K Σ  Sg
2
 

        1                        g=1 

 =  _____   [ K  -     ______   ] 

      K - 1                    Sx
2
 

 

 

                   K                 K 

or rI,II = [ _____  ] [ 1  -  Σ  Sg
2
 / Sx

2 
]       KR#20 Formula    11.6) 

                 K - 1            g=1 

 

 

We have thus derived the Kuder-Richardson Formula 20 estimate of the correlation between an observed test of K 

items and a theoretically parallel test of k items.  Besides knowing the number of items K, one must calculate the 

sum of the item variances for item g = 1 to K and the total variance of the test (Sx2).  We really only had to make 

one assumption other than the parallel test assumptions: that the covariance among UNLIKE items is a reasonable 

estimate of covariance among PARALLEL items. 

 

 If we might also assume that all items are equally difficult (they would have the same means and variances) 

then the above formula may be even further simplified to 

 

                                       _       _2 

                                       X  -  X / K 

           rxx   =    K   [ 1 - __________ ]      (11.7) 

                       K-1             Sx
2 

 

We note that in the KR#20 formula, that as the number of items K grows large, the ratio of K / (K-1) approaches 1.0 

and the reliability approaches 

 

                         K 

               Sx
2
 -  Σ Sg

2
 

                       g=1 

   rxx  =  ___________ 

                   Sx
2
 

 

          =  St
2
 / Sx

2
 

 

 

We now have an expression for the variance of true scores, that is St
2
 = Sx

2
 rxx.  Similarly, we may obtain an 

expression for the variance of errors by 
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     rxx =  (Sx
2
 - Se

2
) / Sx

2
 

 

         =  1.0  -  Se
2 
/ Sx

2
 

 

  or  Se
2
 = Sx

2 
(1 - rxx)        (11.8) 

 

The Standard Error of Measurement, the positive root of the variance of errors is obtained as 

                 _______ 

Se  =  Sx √(1.0 - rxx)        (11.9) 

 

 If the errors of measurement may be assumed to be normally distributed, the standard error indicates the 

amount of score variability to be expected with repeated measures of the same object.  For example, a test that has a 

standard deviation of 15 and a reliability of .91 (as estimated by the KR#20 formula) would have a standard error of 

measurement of 15 * .3 = 4.5 .  Since one standard deviation of the normal curve encompasses approximately 68.2% 

of the scores, we may say that approximately 68% of an individual's repeated measurements would be expected to 

fall within + or - 4.5 raw score points.  We take note of the fact that this is the error of measurement expected of all 

individuals measured by a hypothetical instrument no matter what the original score level observed is.  If you read 

about the Rasch method of test analysis, you will find that there are different estimates of measurement error for 

subjects with varying score levels by that method! 

 

Validity 

 

 When we develop an instrument to observe some attribute of objects or persons, we assume the resulting 

scores will, in fact, relate to that attribute.  Unfortunately, this is not always the case.  For example, a teacher might 

construct a paper and pencil test of mathematics knowledge.  If a student is unable to read (perhaps blind) then the 

test would not be valid for that individual.  In addition, if the teacher included  many "word" problems, the test 

scores obtained for students may actually measure reading ability to a greater extent than mathematics ability!  The 

"ideal" measurement instrument yields scores indicative of only the amount ( or relative amount compared with 

others) of the single attribute of a subject.  It is NOT a score reflecting multiple attributes. 

 

 Consider, for a moment, that whenever you wanted a measure of someone's weight, your scale gave you a 

combination of both their height and weight!  How would you differentiate among the short fat persons and the tall 

thin persons since they could have identical scores?  If a test score reflects both mathematics and reading ability, you 

cannot differentiate persons good in math but poor in reading from those poor in math but good in reading! 

 

 The degree to which a test measures what it is intended to measure is called the VALIDITY of the test.  

Like reliability, we may use an index that varies between 0 and 1.0 to indicate the validity of a test.  Again, the 

Pearson product-moment correlation coefficient is the basis of the validity index. 

 

Concurrent Validity 

 

 If there exists another test in which we have confidence of it being  reasonable measure of the same 

attribute measured by our test, we may use the p-m correlation between our test and this "criterion" test as a measure 

of validity.  For example, assume you are constructing a new test to measure the aptitude that students have for 

learning a foreign language.  You might administer your test and the Modern Foreign Language Aptitude Test to the 

same group of subjects.  The correlation between the two tests would be the validity coefficient. 

 

Predictive Validity 

 

 Some tests are intended to be used as predictors of some future attribute.  For example, the Scholastic 

Aptitude Test (SAT) may be useful as a predictor of future Grade Point Average earned by students in their 

freshman year at college.  When we correlate the results of a test administered at one point in time with a criterion 

measured at some future time, the correlation is a measure of the predictive validity of the test. 
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Discriminate Validity 

 

 Some tests which purportedly measure a single attribute are, as we have said, often composite measures of 

multiple attributes.  Ideally, an English test would correlate highly with other English tests and NOT particularly 

high with intelligence tests, mathematics tests, mechanical aptitude tests, etc.  The degree to which the correlation 

with similar attribute measures differs from the correlation of our test with measures of other attributes is called the 

discriminate validity of a test.  Often the partial correlation between two tests in which the effects of a third, 

supposedly less related test, has been removed, is utilized as a discriminate validity coefficient.  As an example, 

assume that your new test of English correlates .8 with student final examination scores in an English course and 

correlates .5 with the Stanford-Binet test of intelligence.  Also assume that the final examination scores correlate .4 

with the S-B IQ scores.  The partial correlation of your English Test with English final examination scores can be 

obtained as  

 

                         ry,E - ry,I rE,y 

     ry,E.I =         ___________       (11.10) 

                     √(1-ry,I
2
)(1-re,y 

2
) 

 

where 

      ry,E.I is the partial correlation between your test y and the English examination scores, 

      ry,E is the correlation of your test and the English examination scores, 

      ry,I is the correlation of your test with IQ scores, and 

      rE,y is the correlation between English examination scores and IQ scores. 

 

The obtained value would be 

 

     ry,E.I = [(.8 - (.5)(.4)] / √[(1-.25)(1-.16)] 

 

            = .6 / √[(.75)(.84)] 

 

            = .6 / √(.63)  =  .75 

 

In other words, partialling out the effects of intelligence reduced our validity from .8 to .75. 

  

 It is sometimes distressing to discover that a carefully constructed test of a single attribute often may be 

found to correlate substantially with a number of other tests which supposedly measure other, unrelated attributes.  

In our example, we partial out only the effects of one other variable, intelligence.  One can use multiple regression 

procedures to partial out more than one variable from a correlation. 

 

Construct Validity 

 

 The attribute we are proposing to measure with a test is often simply a hypothetical construct, that is, some 

attribute we think exists but which we have had to define by simple description in our language.  There is often no 

way to directly observe the attribute.  The concept of "intelligence" is such a hypothetical construct.  We describe 

more "intelligent" people as those who learn faster and retain their learning longer.  Less "intelligent" persons seem 

to learn at a much slower pace and have more difficult time retaining what they have learned.  With such 

descriptions, we may construct an "intelligence" test.  As you probably well know, a number of people have, in fact, 

done just that!  Now assume that your "intelligence" test along with that of, say, three other tests of intelligence, are 

all administered to the same group of subjects.  We could then construct the inter-correlation matrix among these 

four tests and ask "is there one common underlying variable that accounts for the major portion of variance and 

covariance within and among these tests?"  This question is often answered by determining the eigenvalues and 

corresponding eigenvectors of the correlation matrix.  If there is one particularly larger root out of the four possible 

roots and if the normalized corresponding eigenvalues of that root all are large, we may argue that there is validity 

for the construct of intelligence (at least as defined by the four tests).  This technique and others similar to it are 

usually called "Factor Analysis".  If our test "loads" (correlates) highly with the same common factor that the other 
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tests measuring the same attribute do, then we argue the test has construct validity.  This correlation (factor loading) 

of our test with the other measures of the same attribute is the construct validity coefficient of our test. 

 

Content Validity 

 

 If you were to construct a test of knowledge in a specific area, say "proficiency in statistics", then the items 

you elect to include in your test should stand the scrutiny of experts in the field of statistics.  That is, the content of 

your test in terms of the items you have written should be relevant to the attribute to be measured.  When 

constructing a test, an initial decision is made as to the purpose of the test: is the purpose to demonstrate proficiency 

to some specified level, or is it to measure the degree of knowledge attained as compared to others.  The first type of 

test is often referred to as a "criterion" referenced test.  The second type in a normative test.  With a criterion 

referenced test, the test writer is usually not as concerned with measuring a "single" attribute or latent variable but 

rather of selecting items that demonstrate specific knowledge and skills required for doing a certain job or success in 

some future learning activity.  The norm-referenced tests, on the other hand, usually measure the degree of some 

predominant attribute or "latent" (underlying) variable.  In either case, the test author will typically start with a 

"blueprint" of the domain, i.e., a list of the relevant aspects of the attribute to be measured.  This blueprint may be a 

two-dimensional description of both the topics included in the domain as well as the levels of complexity or 

difficulty to be measured by items within one aspect.  Once the blueprint is constructed, it is used to guide the 

construction of items so that the domain is adequately sampled and represented by the test.  When completed, the 

test may be submitted to a panel of experts who are asked to classify the items into the original blueprint, evaluate 

the relevance of the blueprint areas and items constructed and evaluate the adequacy of the item construction.  The 

percent of agreement among judges on a particular item as being appropriate or not being appropriate as a measure 

of the attribute can be used as an indicator of content validity.  The reliability of judgments across a set of items may 

be used to measure the consistency of the judges themselves.  A large proportion of the test items should be judged 

satisfactory by a high percentage of the judges in order to say that the instrument has content validity. 

 

Effects of Test Length 

 

 Tests of achievement, aptitude, and ability may vary considerably in their number of items, i.e. test length.  

Tests composed on positively correlated items that are longer will display higher reliability then shorter tests.  The 

correlation of reliable measures with other variables will tend to be higher than the correlation of less reliable 

measurements, thus the predictive validity, concurrent validity, etc. will be higher for the longer test. 

  

 Reliability for tests that have been changed in length by a factor of K can be estimated by the Spearman-

Brown "prophecy" formula: 

 

                              K r11 

           Rkk  = ______________       (11.11) 

                     1 + (K - 1) r11 

 

          where r11 is the reliability of the original test, 

          and K is the multiplication factor for lengthening (or shortening) the test. 

 

 As an example, assume you have constructed a test of 20 items and have obtained a reliability estimate of 

0.60 .  You are interested in estimating the reliability of the test if you were to double the number of items with 

items that are similar in inter-correlations, means and variances with the original 20 items.  The factor K is 2 since 

you are doubling the length of the test.  Your estimate would be: 

 

                         (2)(0.60) 

          Rkk =  _______________  =  0.75 

                     1 + (2-1)(.60) 

 

 Therefore, doubling the length of your test would result in an estimated reliability of 0.75, a sizable 

increase above the original 0.60.  The formula can also be used to estimate the reliability of a shortened test 



Statistics and Measurement Concepts for LazStats   William G. Miller ©2012 

 

 364 

constructed by sampling items from a longer test.  For example a test of 100 items with a reliability of 0.90 could be 

used to produce a 25 item short-form test.  The reliability would be 

 

                               (0.25)(0.90) 

          Rkk  = ____________________  =  0.6923 

                          1 + (0.25 - 1)(0.90) 

 

 Note that in this case K = 0.25 since the test length has been changed by a factor of one fourth of the 

original length. 

 

 The Spearman-Brown formula can also be used to estimate the effects on a validity coefficient when either 

the test or the criterion measure have been extended in length.  First we note that if a test is extended in length 

indefinitely (infinite length) then the reliability approaches 1.0.  This permits us to estimate the validity between two 

measures, either or which (or both) have been extended in length.  For example, the correlation between a test that 

has been extended by a factor of K and another test that has been extended by a factor of L is given by : 

                                r1I 

     RKL =         ____________________________________    (11.12) 

                                ______________    ______________ 

            √1/K + (1 - 1/K )r   √ 1/L + (1 - 1/L)rII 

 

 where r1I is the correlation between the two tests, r11 and rII are the reliabilities of the two tests and K and L 

are the factors for extending the two tests. 

 

 If only one of the tests, say for example test I above, is made infinitely long so that its reliability 

approaches 1.0, then the above formula reduces to 

 

                                  r1I 

                   R1∞ =      ___ 

                                √ rII 

 

 The above formula is useful in estimating the validity of a test correlated with a criterion measured without 

error.  In addition, we may be interested in estimating the correlation of a test and criterion both of which have been 

adjusted for unreliability.  This would estimate the correlation between the True scores of each instrument and is 

given by 

                                    r1I 

                    R∞∞  =   ____        (11.13) 

                               √ r11 rII 

 

Composite Test Reliability 

 

 Teachers often base course grades on the basis of a combination of tests administered over the period of the 

semester.  The teacher usually, however, desires to give different weights to the tests.  For example, the teacher may 

wish to weight tests 1, 2 as 1/4 of the total grade and the final exam (test 3) as 1/2 of the grade.  Since the tests may 

vary considerably in length, mean, variance and reliability, one cannot simply add the weighted raw scores achieved 

by each student to get a total score.  Doing so would give greater weight than intended to the more variable test and 

less weight than intended to the less variable test.  A preferable method of obtaining the total weighted score would 

be first to standardize each test to a common mean and standard deviation.  This is usually done with the z score 

transformation, i.e.  

                                 _ 

                         (Xi - X) 

                    zi = _______        (11.14) 

                            Sx 

 

 Each subject's z score for a test may then be weighted with the desired test weight and the sum of the 

weighted z scores be used as the total score on which grades are based.  The reliability of this composite weighted z 

score can be estimated by the following formula: 
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                                WCW' 

               Rww  =    ______        (11.15) 

                                WRW' 

 

          where Rww is the reliability of the composite, 

          W is a row vector of weights and W' is the column transpose of W, 

          R is the correlation matrix among the tests and 

          C is the R matrix with the diagonal elements replaced with estimates of the  

          individual test reliabilities. 

 

     As an example, assume a teacher has administered three tests during a semester course and obtains the following 

information: 

 

                      CORRELATIONS 

TEST            1        2         3 

 

1                  1.0      .6        .4 

2                    .6    1.0        .5 

3                    .4      .5      1.0 

 

Reliability       .7      .6        .8 

Weights        .25    .25      .50 

 

     The reliability of the composite score would then be obtained as: 

 

 

                                              |  .7   .6   .4   |    .25 

      (.25  .25  .50)       |  .6   .6   .5   |   (.25 ) 

                                              |  .4   .5   .8   |    .50 

Rww = _____________________________________________ 

                                            | 1.0   .6   .4   |    .25 

                  (.25  .25  .50)    |  .6  1.0   .5   |   (.25 ) 

                                            |  .4   .5  1.0   |    .50 

 

    =  0.861 

 

 The above equation utilizes matrix multiplication to obtain the solution.  If you have not used matrix 

algebra before, you may need to consult an elementary text book in matrix algebra to familiarize yourself with the 

basic operations. 

 

Reliability by ANOVA 

Sources of Error - An Example 

 

 In the previous sections, an observed score for an individual on a test was considered to consist of two 

parts, true score and error score, i.e. X = T + E.  Error scores were assumed to be random with a mean of zero and 

uncorrelated with the true score.  We now wish to expand our understanding of sources of errors and introduce a 

method for estimating components of error, that is, analyzing total observed score variance into true score variance 

and one or more sources of error variance.  To do this, we will consider a measurement example common in 

education - the rating of teacher performance. 

 

A Hypothetical Situation 
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 Assume that teachers in a certain school district are to be rated by one or more supervisor one or more 

times per year.  Also assume that a rater employs one or more "items" in making a rating, for example, lesson plan 

rating, handling of discipline, peer relationships, parent conferences, grading practices, skill in presenting material, 

sensitivity to students, etc..  We will assume that the teachers are rated on each item using a scale of 1 to 10 points 

with 1 representing very inadequate to 10 representing very superior performance.  We note that in this situation: 

     (1) teachers to be rated are a sample from a population of teachers, 

     (2) supervisors doing the rating are a sample of supervisors, 

     (3) items selected are a sample of possible teacher performance items, 

     (4) ratings performed are a sample of possible replications, and 

     (5) teacher performance on a specific item may vary from situation to situation due to  

          variation in teacher mood, alertness, learning, etc. as well as due to situational  

          variables such as class size, instructional materials, time of day, etc.. 

 

 We are interested of course in obtaining ratings which accurately reflect the true competence of a teacher 

and the true score variability among teachers (perhaps to reward the most meritorious teacher, identify teachers 

needing assistance, and selection of teachers for promotion).  We must recognize however, a number of possible 

sources of variance in our ratings - sources other than the "true" competence of the teachers and therefore error of 

measurement: 

     (a)  variability in ratings due to items sampled from the population of possible items, 

     (b)  variability in ratings due to the sample of supervisors used to do the ratings, 

     (c)  variability in ratings due to the sample of teachers rated, 

     (d)  interactions among items, teachers and supervisors. 

     Let us assume in our example that six teachers are rated by two supervisors (principal and coordinator) on each 

of four items.  Assume the following data have been collected: 

 

 

 

 

------------------------------------------------------------------ 

              Principal        Coordinator           Combined 

    Item 1   2   3   4       1   2   3   4      Princ. Coord. Both 

------------------------------------------------------------------ 

Teacher 

   1       9   6   6   2        8   2   8   1       23     19     42 

   2       9   5   4   0        7   5   9   5       18     26     44 

   3       8   9   5   8      10   6   9 10       30     35     65 

   4       7   6   5   4        9   8   9   4       22     30     52 

   5       7   3   2   3        7   4   5   1       15     17     32 

   6     10   8   7   7        7   7 10   9       32     33     65 

 

SUM  50 37 29 24     48  32 50 30      140    160    300 

 

Item Sums for Principal + Coordinator 

                  98 69 79 54 

 

 

     We now define the following terms to use in a three way analysis of variance: 

 

     Xijk = the rating for teacher i on item j from supervisor k. 

 

1.  

      6    4     2          2 

      Σ   Σ     Σ (Xijk )  = 2,214    Sum of Squares of single 

     i=1 j=1  k=1                          observations. 

 

      4    2          2 

      Σ   Σ (X.jk ) = 12,014        Sum of Squares over 

     j=1 k=1                               teachers. 
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      6    2         2 

      Σ   Σ (Xi.k ) = 8,026         Sum of Squares over 

     i=1 k=1                             items. 

 

      6    4          2 

      Σ   Σ (Xij. ) = 4,258         Sum of Squares over 

     i=1 j=1                              supervisors. 

 

      2          2 

      Σ (X..k ) = 45,200            Sum of Squares over 

     k=1                                   teachers and items. 

 

      4           2 

      Σ (X.j. ) = 23,522            Sum of Squares over 

     j=1                                    teachers and supervisors 

 

      6          2 

      Σ (Xi.. ) = 15,878            Sum of Squares over 

     i=1                                   items and supervisors. 

 

             2 

     (X... ) = 90,000               Square of grand sum of 

                                            all observations. 

 

Our analysis of variance table may contain the following 

sums of squares: 

                                                                            6    4     2          2 

                                        6    4     2           2       Σ    Σ     Σ   Xijk) 

Total Sums of Squares = Σ   Σ    Σ   (Xijk) -      i=1 j=1 k=1        

                                       i=1 j=1 k=1                  (6)(4)(2) 

 

     or SStotal = 2,214 - 90,000 / 48  = 339.00 

 

                                             6         2       6    4     2          2 

                                             Σ (Xi.. )      ( Σ   Σ     Σ  Xijk ) 

Teacher Sums of Squares =             i=1          -    i=1 j=1 k=1         

                                             (4)(2)               (6)(4)(2) 

 

     or SSteachers = 15,878 / 8  -  90,000 / 48  =  109.80 

 

                                           4          2   6   4   2        2 

                                             Σ (X.j.)   ( Σ  Σ   Σ Xijk ) 

Item Sums of Squares  =     j=1       -   i=1 j=1 k=1 

                                            (6)(2)          (6)(4)(2) 

 

     or SSitems  =  23,522 / 12  -  90,000 / 48  = 85.2 

 

                                             2             2         6    4   2        2 

                                           Σ   (X..k)          ( Σ   Σ   Σ Xijk ) 

Supervisor Sum of Squares =         k=2           -        i=1 j=1 k=1        

                                                      (6)(4)                    (6)(4)(2) 

 

     or SSsuperv = 45,200 / 24  - 90,000 / 48  =  8.3 
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                             6     4          2     6   4     2       2 

                            Σ    Σ (Xij. )     ( Σ   Σ   Σ Xijk ) 

Teacher-Item Interaction=  i=1  j=1      -      i=1 j=1 k=1       

                                           2                   (6)(4)(2) 

 

                          - SSteachers  - SSitems 

 

     or SSTxI  = 4,258/2 - 90,000/48 - 109.8 - 85.2 = 59.00 

 

                            6   2          2      6   4   2          2 

                            Σ   Σ (Xi.k)      ( Σ   Σ   Σ Xijk ) 

Teacher-Superv. Inter  =  i=1 k=1        -     i=1 j=1 k=1      

                                              4                        (6)(4)(2) 

 

                         -  SSteachers - SSsuperv 

 

     or SSTxS  =  8,026/4 - 90,000/48 - 109.8 - 8.3 = 13.4 

 

                            4     2         2      6   4    2        2 

                            Σ   Σ (X.jk)       ( Σ   Σ   Σ Xijk ) 

Item-Superv. Interact. =  j=1 k=1         -     i=1 j=1 k=1      

                                                (6)                     (6)(4)(2) 

 

                         - SSitems  -  SSsuperv 

 

     or SSIxS  =  12,014/6 - 90,000/48 - 85.2 - 8.3 = 33.8 

 

 

                                                        6    4   2        2 

                   6   4   2         2         (  Σ    Σ   Σ Xijk ) 

Teacher-Item-Super.=   Σ   Σ   Σ (Xijk)  -          i=1 j=1 k=1                

                 i=1 j=1 k=1                    (6)(4)(2) 

 

                     - SSteachers  - SSitems  -  SSsuperv. 

 

     or SSTxIxS = SStotal - (SSteachers + SSitems + 

 

                  SSsuperv + SSTxI + SSTxS + SSIxS ) 

 

                = 339.0 - (109.8 + 85.2 + 59.0 + 13.4  + 33.8 )  =  29.5 

 

The Analysis of Variance table may be summarized as : 

 
--------------------------------------------------------- 

SOURCE             D.F.   SS  MS 

--------------------------------------------------------- 

Teachers (T)         5             109.8      21.96 

Items (I)            3          85.2      28.40 

Supervisors (S)      1             8.3       8.30 

T x I Interaction   15           59.0        3.93 

T x S Interaction    5           13.4        2.68 

I x S Interaction    3           33.8      11.27 

T x I x S Inter.    15           29.5        1.97 

 

--------------------------------------------------------- 
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 We may now use each of the above mean squares to estimate population variance components in 

examining the reliability of the ratings.  We have : 

 

S
2
TxIxS=   MSTxIxS  =  1.97 

 

 The second order interaction is our  error (residual) term since we only  have a single observation under 

each of the three facets (teachers, items and supervisors). 

 

 

     S
2

TxI = .5(MSTxI-MSTxIxS) = .5(3.93) - 1.97) = 0.98 

 

 This is our error variance attached to teacher interaction with items.  Each mean square at a given level 

includes variance at a higher level of interaction.  We subtract out that previously obtained portion.  We also divide 

by the number of observations on which the term is based - in this case the teacher by item interaction is based on 

two supervisors. 

 

       

     S
2

TxS = (1/4)(MSTxS - MSTxIxS ) = .25(2.68 - 1.97) = .18 

 

 This is our estimate of error due to interaction of teachers and supervisors (repeated over the four items). 

 

       

     S
2

IxS = (1/6)(MSIxS - MSTxIxS ) = (11.27 - 1.97)/6=1.55 

 

 This is the estimated error variance for interaction of items and supervisors over the six teachers. 

 

     S
2

T  = [1/(4)(2)][ MST - MSTxI - MSTxS + MSTxIxS] 

 

         =  ( 21.96 - 3.93 - 2.68 + 1.97) / 8 = 2.16 

 

 This is our estimate of variance due to differences among teachers - that variance we hope is large in 

comparison to error variance.  It is our estimate of the teachers variance component of each rating by each 

supervisor. 

 

       

     S
2

I = [1/(6)(2)][ MSI - MSTxI - MSIxS + MSTxIxS] 

 

        = (28.4 - 3.93 - 11.27 + 1.97) / 12  =  1.26 

 

 This is variance due to variability of ratings among the items or item "difficulty". 

 

       

     S
2

S = [1/(6)(4)][MSS - MSTxS - MSIxS + MSTxIxS] 

 

        = (8.3 - 2.68 - 11.27 + 1.97) / 24  <  0 

 

 This estimate of variability due to supervisors is less than zero hence considered negligible.  While variance 

cannot be less than zero, our small sample of supervisors that apparently rated quite consistently led to this estimate.  

Estimates may, of course, fall above or below the population values. 

 

 We now turn to the question of estimating the reliability of our ratings.  In previous sections the classical 

definition of reliability was given as 

 

                         σ
2

rue                      σ
2

true 

           rxx = _________    =       ______ 

         σ
2

true + σ
2

error          σ
2
observed 

 

The "true" score variance for J items rated by K supervisors is given by 
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          2            2  2               2 

         Strue  =  (JK) ST  = [(4)(2)] 2.16  = (64)(2.16)  = 138.24 

 

Our "observed score" variance is estimated by 

 

     2                      2        2         2         2           2 

    Sobs = (JK)(JKSt  + JSs  + KSi  + JSTxS  + KSTxI 

 

                           2        2 

                      + SIxS + STxIxS ) 

 

         = (4x2) [(4x2)2.16 + (4)0  + (2)1.26 + (4)0.18 

                            + (2)0.98 + 1.55 + 1.97) 

         = 208 

 

and the ratio S
2

true / S
2

observed = rxx = 0.665 is the estimate of the correlation that would be obtained between two sets 

of scores for a group of teachers rated on the basis of a random set of four items chosen for each teacher and rated 

by a random set of two supervisors for that teacher.  Note our emphasis that this is a random effects model - each 

teacher could be rated on a sample of different items and by different supervisors! 

 

 In examining the sources of error, increasing the number of items would most likely reduce the largest error 

components (items and interaction of items with teachers and supervisors). 

 

 If the items used by each person doing the ratings is the same (fixed effects of items), the variance 

component for items disappears from the estimate of observed score variance giving  

 

    S
2
observed = (0 + .24 + 0.09 + 0.19 + 0.25) = 2.93 

 

and rxx = 2.16 / 2.93 = 0.74 

 

Obviously, using the same test on all teachers yields a more precise estimate of the teacher competencies.  If we also 

fix the supervisors so that all teachers are rated by the same two supervisors, then S
2

S and S
2

IxS disappears as sources 

of error variance and the observe score is given by 

 

S
2
   =  S

2
T + S

2
TxI / J  +  S

2
TxS / K  +  S

2
TxIxS / JK 

 

        =  2.16  +  0.24  + 0.09  + 0.25  =  2.74 

 

and  rxx  =  2.16 / 2.74  =  0.79 

 

By using the same items and supervisors, the reliability of the ratings has been increased from .66 to .79 . 

 

 We may further assume that our items are not a sample from a population of items but, in fact, constitute 

the universe of teacher behaviors to which we intend to generalize.  In this case, S
2
TxI and S

2
I will both disappear 

from our error term.  Our estimates of true and observe score therefore become: 

 

S
2
true  =  S

2
T  +  S

2
TxS / J  =  2.16  + 0.24  =  2.40 

 

and 

 

S
2
observed = S

2
true = (S

2
S/K + S

2
TxS/K + S

2
IxS / JK 

 

 + S
2

TxIxS / JK)   = 2.93 

 

Therefore  rxx  =  2.4 / 2.93  =  0.82 

 

 Finally, if we choose to consider only two specific supervisors as our universe of supervisors, then 
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 S
2

true = S
2

T + S
2
TxS / J  +  S

2
TxS / K  = 2.16 + .24 + .09 

 

          = 2.49 

 

and  S
2

observ = S
2

true  +  S
2

TxIxS / JK  =  2.49 + 0.25 = 2.74 

 

Therefore,  rxx  =  2.49 / 2.74  = 0.91 

 

 Clearly, the degree to which one intends to generalize a test or rating procedure affects the reliability of the 

measurements for that purpose. 

 

 In the previous discussion we have examined multiple facets of reliability.  We saw that the assumptions of 

sampling both test items and raters as well as subjects affected our estimate of reliability.  We now will relate the 

above analysis with a simple ANOVA approach using the "Treatments by Subjects" analysis of variance program 

found in the Measurement Menu of the SAMPLE system.  To illustrate its use, we will combine the two supervisor 

ratings from the above example and treat our data as consisting of six teachers who have been rated on four items.  

We assume we are using the population of "items" and the same raters on each teacher rated.  Our data consists of 

the following: 

 

                            ITEM                      SUM 

TEACHER        1    2      3     4 

 

   1           17    8    14     3               42 

   2           16   10   13     5               44 

   3           18   15   14   18               65 

   4           16   14   14     8               52 

   5           14     7     7     4               32 

   6           17   15   17   16               65 

 

SUM            98   69   79   54              300 

 

 In calculating the sums of squares for the ANOVA, we first obtain the squares of individual ratings, squares 

of the sums for each teacher, squares of the sums for each item and the square of the sum of the item (or teacher) 

sums.  These are: 

 

 

 6    4        2 

 Σ   Σ (Xij)   = 4,258       Squares of single observations 

i=1 j=1 

 

     6        2 

     Σ (Xi.)   = 15,878      Squares of teacher sums 

    i=1 

 

     4        2 

     Σ (X.j)   = 23,522      Squares of item sums 

    j=1 

 

              2 

       (X..)   = 90,000      Square of grand total 

 

The sum of squared deviations about the mean for the terms of our ANOVA are obtained using the above terms and 

computed as follows: 

 

SStotal      =  4,258 - 90,000 / 24  =  508 

 

SSteachers   =  15,878 / 4  -  90,000 / 24  =  219.50 
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SSitems      =  23,522 / 6  -  90,000 / 24  =  170.33 

 

SSIxT        =  SStotal - SSteachers - SSitems + 90,000 / 24 

 

             =  118.17 

 

The SSitems and SSIxT are often combined into a SSwithin to represent the total sum of squares due to variation within 

subjects, i.e. the squared deviations of subject's scores about the subject means.  The ANOVA summary table may 

look as follows: 

 

----------------------------------------------------------------- 

SOURCE             D.F.            SS          MS       F 

----------------------------------------------------------------- 

Among Teachers      5        219.50      43.90     5.57 

 

Within Teachers     18        288.50      16.03 

  Items                      3        170.44      56.78     7.21 

  Teachers x Items  15        118.17        7.88 

 

Total                       23        508.00 

---------------------------------------------------------------- 

 

 

The terms for our reliability are 

 

S
2
true      =  (MSobserved - MSTxI) / N 

 

               =  (43.90 - 7.88) / 6 = 6.00 

 

 

S
2
observed  =  Strue  +  MSTxI / N = 6.02 + 7.88 / 6 

 

               =  6.00   +  7.88 / 6  = 7.31 

 

and the reliability is 

 

 rxx  =  S
2

true / S
2

observed = 6.00 / 7.31  =  0.82 

 

 This reliability is called the adjusted average rating reliability on the printout from the program in your 

system. It reflects the reliability of ratings in which the error due to differences in average ratings by the judges or 

items has been removed.  Essentially, the individual ratings are "adjusted" so that the column sums or means are 

equal.  If a test of J dichotomously scored items are analyzed by both the Kuder-Richardson Formula 20 and the 

Treatment by Subjects ANOVA procedures, the KR#20 reliability will equal the reliability reported above. 

 

     One can also  estimate a single item reliability by obtaining an average item reliability using 

 

                MST - MSTxI         43.9 - 7.88 

     rsingle = ________________  =       ____________  = 0.53 

                MST + (J-1)MSTxI     43.9 - (3)7.88 

 

 Again, this reliability reflects an adjustment for the "difficulty" of the items, that is, all ratings or items are 

made to reflect the same sum or average across the subjects rated.  A similar result would be obtained by using the 

Spearman-Brown Prophecy formula where we estimate the reliability of a test reduced in length to a single item. 

 

 Should the user want to know what the reliability of the ratings or test is without adjustment for variability 

in mean ratings, then the following may be used: 
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     For the unadjusted test reliability 

 

          rxx = 1.0 - (MSwithin / MST) 

 

              = 1.0 - (16.03 / 43.90)  =  0.63 

 

 

     For the estimate of a single item reliability unadjusted for difference among item (or rating) means, the formula is 

 

                     MST - MSwithin 

           rxx = _______________________ 

                  MST + (J-1)MSwithin 

 

              = (43.9 - 16.03) / (43.9 + (4-1)16.03) 

 

              = 0.30 

 

Item and Test Analysis Procedures 

 

 Teachers typically construct their own tests to measure the achievement of students in their courses.  In 

constructing the test, it is a good idea to begin with a test "blueprint" or table of specifications for the test.  This test 

blueprint usually consists of a table in which the rows represent content or concept areas to be tested and the 

columns represent levels of thinking required such as classified by Bloom's taxonomy of cognitive skills.  The cells 

may simply indicate the number of items to be written in each concept area at each level of thinking skill.  For 

example, an elementary teacher might construct a blueprint for a test over arithmetic concepts for eighth grade 

students using something like the following: 

 

LEVEL  

           Knowledge  Application  Synthesis  Evaluation 

CONCEPT 

 

Addition         3          3            1            1 

Subtraction     2           2            1            2 

 Multiplication   3          3            0            0 

Division         2          2            2            1 

Percentage       3          3            3            3 

Exponents       2           3            1            1 

 

 In this example, the teacher would construct 47 items from the table of specifications.  The items 

constructed may be of a variety of types such as multiple choice, matching, completion, problem solving, etc..  Once 

the test is constructed and administered to the students, the teacher may then evaluate various properties of the items 

and test. For example, the teacher may want to know how reliable the test is, how difficult each item was, how well 

each item differentiates between high and low scoring students, and how the test might be improved for subsequent 

use.  This section describes several methods for analyzing tests and the items within tests. 

 

Classical Item Analysis Methods 

 

Item Discrimination 

 

 If a test is constructed to test one predominant domain or area of achievement or knowledge then each item 

of the test should correlate positively with a total score on the test.  The total score on the test is usually obtained by 

awarding a value of 1 to a student if they get an item correct and a 0 if they miss it and summing across all items.  
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On a 47 item test, a student that gets all items correct would therefore have a total score of 47 while the student that 

missed all items would have a score of 0.  

 

  We can correlate each item with the total score obtained by the students.  We may use the Pearson 

Product-Moment correlation formula (see the section on simple correlation and regression) to do our calculations.  

We note however that we are correlating a dichotomous variable (our item is scored 0 or 1) with a continuous 

variable (total scores vary from 0 to the number of items in the test).  This type of correlation is also called a "Point-

Biserial Correlation".  Unfortunately, when one of the variables in the product-moment correlation is  dichotomous, 

the correlation is affected by the proportion of scores in the dichotomous variable.  If the proportion of 0 and 1 

scores is about the same (50% for each), the correlation may approach 1.0.  When the split of the dichotomous 

variable is quite disproportionate, say .2 and .8, then the correlation is restricted to much lower values.  This 

certainly makes interpretation of the point-biserial correlation difficult.  Nevertheless, a "good" test item will have 

positive correlations with the total score of the test.  If the correlation is negative, it implies that more knowledgable 

students are more likely to have missed the item and less knowledgeable students likely to have gotten the item 

correct!  Clearly, such an item is inconsistent with the measurement of the remaining items.  Remember that the total 

score contains, as part of the total, the score of each item.  For that reason, the point-biserial correlation will tend to 

be positive.  A "corrected" point-biseral correlation can be obtained by first subtracting the individual item score 

from the total score before calculating the correlation between the item and total.  If a test has many items, say more 

than 30, the correction will make little difference in the correlation.  When only a few items are administered 

however, the correction should be applied. 

 

 The point-biserial correlation between test item and test total score is a measure of how well the item 

discriminates between low and high achievement students.  It is a measure of item discrimination potential.  Other 

item discrimination indices may also be used.  For example, one may simply use the difference between the 

proportion passing the item in students ranking in the top half on the total score and the proportion passing the item 

among students in the bottom half of the class.  Another index, the biserial correlation, may be calculated if one 

assumes that the dichotomously scored item is actually an imprecise measure of a continuous variable.  The biserial 

correlaiton may be obtained using the formula:  

                      ______ 

     rbis = rpbis √pi qi / yI        (11.16) 

 

where rpbis is the point-biserial correlation, pi and qi are the proportions passing and failing the item, and yi is the 

ordinate of the normal curve corresponding to the cumulative proportion pi. 

 

Item difficulty 

 

 In classical test analysis, the difficulty of an item is indicated by the proportion of subjects passing the item.  

An easy item therefore has values closer to 1.0 while more difficult items have values closer to 0.0 .  Since the mean 

of an item scored either 0 or 1 is the same as the proportion of subjects receiving scores of 1, the mean is the 

difficulty of the item.  An ideal yardstick has markings equally spaced across the ruler.  This permits its use to 

measure objects varying widely in length.  Similarly, a test composed of items equally spaced in difficulty permits 

reasonable precision in measuring subjects that vary widely in their knowledge.  With item difficulties known, one 

can select items along the continuum from 0 to 1.0 so that the revised instrument has approximately equal interval 

measurement.  Unfortunately, the sample of subjects on which the item difficulty estimates are based must 

adequately represent all of the subjects for which the instrument is to be used.  If another group of subjects that 

differs considerably in their knowledge is used to estimate the item difficulties, quite different estimates can be 

obtained.  In other words, the item difficulty estimates obtained in classical test analysis methods are dependent on 

the sample from which they are obtained.  It would clearly be desirable to have item parameter estimates that are 

invariant from group to group, that is, independent of the subjects being measured by those items. 

 

 In our discussion we have not mentioned errors of measurement for individual items.  In classical test 

analysis procedures we must assume that each item measures with the same precision and reliability as all other 

items.  We usually assume that errors of measurement for single items are normally distributed with a mean of zero 

and that these errors contribute proportionally to the error of measurement of the total test score.  Hence the standard 

error of measurement is assumed equal for subjects scoring from 1 to 50 on a 50 item test! 
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The Item Analysis Program 

 

 The LazStats package includes a program for item analysis using the Classical test theory.  The program 

provides for scoring test items that have been entered as 0's and 1's or as item choices coded as numbers or letters.  If 

item choices are in your data file, you will be asked to enter the correct choice for each item so that the program may 

convert to 0 or 1 score values for each item.  A set of items may consist of several independent sub-tests.  If more 

than one sub-test exists, you will be asked to enter the sequence number of each item in the sub-tests.  You may also 

elect to correct for guessing in obtaining total scores for each subject. Either rights-wrongs or rights - 1/4 wrongs 

may be elected. Finally, you may weigh the items of a test to give more or less credit in the total score to various 

items.  An option is provided for printing the item scores and sub-score totals.  You may elect one of several 

methods to estimate the reliability of the scored items.  The sub-test means and standard deviations are computed for 

the total scores and for each item.  In addition, the point-biserial correlation of each item with each sub-score total is 

obtained.  Item characteristic curves are optionally printed for each item.  The curves are based on the sub-score in 

which the item is included.  The proportion of subjects at each decile on the sub-score that pass the item is plotted.  

If a reasonably large number of subjects are analyzed, this will typically result in an approximate "ogive" curve for 

each item with positive point-biserial correlations.  Examination of the plots will reveal the item difficulty and 

discrimination characteristics for various ability score groups. 

 

Item Response Theory 

 

 The past few decades has seen a rapid advance in the theories of psychological measurement.  Among the 

more important contributions is the conceptualization of subject's responses to a single item.  Simply stated, we 

assume that the probability of a subject correctly answering an item is a function of both subject and item parameters 

(stable characteristics).  Usually the subject is considered to have one parameter - ability (or knowledge).  The item, 

on the other hand, may have one or more parameters.  Item difficulty is one parameter but item discrimination and 

chance-correctness are two other possible parameters to estimate.  For example, a multiple choice item with five 

alternatives has a smaller probability of being correctly answered by guessing than a true-false type of question.  

Additionally, some items may differentiate among a broad range of student abilities while others discriminate only 

among subjects within a narrow range of abilities. 

 

 The functional relationship between the probability for correctly answering a question and the ability of 

subjects is usually represented by an item characteristic curve such as that depicted below.  We might use total 

scores on the test as approximations of subject's ability parameter and plot the proportion of subjects in each score 

group that correctly answered the item. 

 

PROPORTION 

CORRECT 

1.0                                         * 

0.9                              * 

0.8                        * 

0.7                      * 

0.6                    * 

0.5                  * 

0.4                * | 

0.3             *    | 

0.2          *       | 

0.1  *   *          | 

0.0                   | 

_________________________________________________________ 

     1   2   3   4   5   6   7   8   9  10  11  12  13  14 

            ABILITY (ESTIMATED BY TOTAL TEST SCORE) 

 

 An individual's ability score may be obtained by averaging the probabilities for those items correctly 

answered and multiplying by the number of items in the test.  In the Fig. above, a vertical line is drawn at the 

median (50 percentile).  This represents the ability of subjects that have a 50-50 chance (odds) of passing the item.  

It also may be considered the difficulty of the item.  Note that the probabilities of passing the item increase 
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continuously as the total score (or ability) of the subjects increase.  We say that the probability of passing the item is 

a monotonic increasing function of ability.  Clearly, an item for which the probability of correctly answering the 

item decreased as subject abilities increased would not be a desirable item!  The slope of the curve at the median 

denotes the "discriminating power" of the item.  If the slope is steep, a small change in subject ability produces a 

relatively large change in the probability of correctly answering the item.  A very shallow slope would imply a low 

ability of the item to differentiate among subjects widely varying in ability.  Typically, an item with a steep slope 

will only have that steepness over a relatively small range of abilities.  For that reason, one item is insufficient to 

measure abilities with precision over a wide range of abilities.  One would ideally have an instrument composed of  

multiple items with steep (and equal) sloped characteristic curves that overlapped on the linear portions of the 

curves.  The Fig. below might represent a four item test with items equally spaced in difficulty and equal in 

discrimination: 

 

PROPORTION 

CORRECT 

 

1.00                             1     2     3     4 

0.95                         1     2     3     4 

0.9                      1     2     3     4 

0.8                     1     2     3     4 

0.7                    1     2     3     4 

0.6                   1     2     3     4 

0.5                  1     2     3     4 

0.4                 1     2     3     4 

0.3                1     2     3     4 

0.2               1     2     3     4 

0.1            1     2     3     4 

0.05      1     2     3     4 

0.00 1     2     3     4 

________________________________________________________ 

     1   2   3   4   5   6   7   8   9  10  11  12  13 

                       ABILITY 

  

 It is apparent that items 1, 2, 3 and 4 above provide a different amount of information concerning the ability 

of subjects that differ in their ability.  For example, item one provides little information about subjects that have total 

score ability greater than 8.  Similarly, item 4 provides little information for subjects scoring below 5.  The amount 

of discrimination information of an item for varying levels of ability is a function of the slope of the item line at 

each ability level.  If we can describe the rate of change of ability at any point on an item characteristic curve, we 

can plot that rate of change against ability level.  Such "plots" are called item information curves.  A test information 

curve can similarly be plotted by summing the item information (rate of ability change) at each ability level.  For an 

item of moderate difficulty and relatively steep slope, such an item information function might look like the Fig. 

below: 

 

ITEM INFORMATION (Y AXIS) vs ABILITY PARAMETER (X AXIS) 

(Rate of Change 

in Ability) 

1.0                               * 

0.9                           *       * 

0.8                        *             * 

0.7                      *                 * 

0.6                     *                   * 

0.5                    *                     * 

0.4                   *                       * 

0.3                 *                           * 

0.2               *                               * 

0.1           *                                       * 

0.0    *                                                  * 

____________________________________________________________ 

       1   2   3   4   5   6   7   8   9  10  11  12  13  14 
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The One Parameter Logistic Model 

 

 In the classical approach to test theory, the item difficulty parameter is estimated by the proportion of 

subjects in some "norming" group that passes the item.  Other methods may be used however, to estimate item 

difficulty parameters.  George Rasch developed one such method.  In his model, all items are assumed to have equal 

item characteristic slopes and little relevant chance probabilities.  The probability of a subject answering an item 

correctly is given by the formula 

 

                                           D(dj - bi) 

                                         e 

          P(X=1|bi)  = _____________       (11.17) 

                                       D(dj - bi) 

                         1.0  -    e 

 

          where bi is the ability of an individual, 

          dj is the difficulty of item j, D is an arbitrary scaling or expansion factor, and 

          e is the constant 2.7182818.....( the base of   the natural logarithm system). 

 

 An individual's ability bi is estimated by the product of the expansion factor D and the natural log odds of 

obtaining a score X out of K items, i.e., 

 

                                   X 

               bi = D log  ____        (11.18) 

                                K - X 

 

 The above equation may also be solved for X, the subject's raw score X expected given his or her ability, 

that is 

 

                                   (bi / D) 

                             K e 

               Xi  =  ______________       (11.19) 

                                    (bi / D) 

                            1 + e 

 

The expansion factor D is a value which reflects the variability of both item difficulties dj and abilities bi.  When 

scores are approximately normally distributed, this value is frequently about 1.7. 

 

 The Rasch one-parameter logistic model assumes that all items in the test that are analyzed measure a 

common latent variable.  Researchers sometimes will complete a factor analysis of their test to ascertain this 

unidimensional property prior to estimating item difficulties using the Rasch model.  Items may be selected from a 

larger group of items that "load" predominantly on the first factor of the set of items. 

 

 The LazStats package includes a program to analyze subject responses to a set of items.  The results include 

estimates of item difficulties in log units and their standard errors.  Ability estimates in log units and errors of 

estimate are also obtained for subjects in each raw total score group.  One cannot estimate abilities for subjects that 

miss all items or correctly answer all items.  In addition, items that all subjects miss or get correct cannot be scaled.  

Such subjects or items are automatically eliminated by the program.  The program will also produce item 

characteristic curves for each item and report the point-biserial correlation and the biserial correlation of each item 

with the total test score. 

 

 The Rasch  method of calibrating item difficulty and subject ability has several desirable properties.  One 

can demonstrate that the item difficulties estimated are independent of the abilities of subjects on which the 
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estimates are based.  For example, should you arbitrarily divide a large group of subjects into two groups, those who 

have total scores in the top half of the class and those who have scores in the bottom half of the class, then complete 

the Rasch analysis for each group, you will typically obtain item difficulties from each analysis that vary little from 

each other.  This "sample-free" property of the item difficulties does not, of course, hold for item difficulties 

estimated by classical methods, i.e. proportion of a sample passing an item.  Ability estimates of individuals are 

similarly "item-free".  A subset of items selected from a pool of Rasch calibrated items may be used to obtain the 

same ability estimates of an individual that would be obtained utilizing the entire set of items (within errors of 

estimation).  This aspect of ability estimation makes the Rasch scaled items ideal for "tailored" testing wherein a 

subject is sequentially given a small set of items which are optimized to give maximum precision about the 

estimated ability of the subject. 

 

Estimating Parameters in the Rasch Model: Prox. Method 

 

 Item difficulties and subject abilities in the Rasch model are typically expressed in base e logarithm values. 

Typical values for either difficulties or abilities range between -3.0 and 3.0 somewhat analogous to the normally 

distributed z scores.  We will work through a sample to demonstrate the calculations typically employed to estimate 

the item difficulties of a short test of 11 items administered to 127 individuals (See Applied Psychometrics by R.L. 

Thorndike, 1982, pages 98-100).  In estimating the parameters, we will assume the test items involved the student in 

generating a response (not multiple choice or true false) so that the probability of getting the item correct by chance 

is zero.  We will also assume that the items all have equal slopes, that is, that the change in probability of getting an 

item correct for a given change in student ability is equal for all items.  By making these assumptions we need only 

solve for the difficulty of the item. 

 

 The first task in estimating our parameters is to construct a matrix of item failures for subjects in each total 

score group.  A total score group is the group of subjects that have the same score on the test (where the total score 

is simply the total number of items correctly answered).  Our matrix will have the total test score as columns and 

individual items as rows.  Each element of the matrix will represent the number of students with the same total test 

score that failed a particular item.  Our sample matrix is 

 

 

                    TOTAL TEST SCORE                        TOTAL 

   1     2     3     4     5     6     7     8    9   10  FAILED 

ITEM 

 

 1    10   10   10     7     7     4     2    1    0    0    51 

 2    10   14   14   12   17   12     5    1    0    0    85 

 3    10   14   11   11     7     6     3    0    0    0    62 

 4       1     1     0     1     0     0     0    0    0    0      3 

 5    10     8     9     6     6     3     1    1    0    0     44 

 6    10   14   14   15   21   21   12    6    2    1   116 

 7    10   14   11   13   19   22     8    5    0    1   103 

 8    10   14     8     8   12     7     1    0    1    0     61 

 9    10   14   14   14   20   18   11    4    0    1   106 

10    10   14   14   14   19   20     9    9    1    2   112 

11       9   10     4     4     5     2     0    0    0    0     34 

 

No.in 

Grp.     10   14   14   15   22   23   13    9    2    5    127 

 

 We begin our estimation of the difficulty of each item by calculating the odds of any subject failing an 

item.  Since the far right column above is the total number of subjects out of 127 that failed the items in each row, 

the odds of failing an item are 

 

                         no. failing 

     odds =    ____________________      (11.20) 

                    no. subjects - no. failing 
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If we divided the numerator and denominator of the above ratio by the number of subjects we would obtain for any 

item i, the odds 

 

                      Pi 

    odds =    ___________        (11.21) 

                 1.0 - Pi 

 

Next, we obtain the natural logarithm of the odds of failure for each item.  The mean and variance of these log odds 

are then obtained.  Now we calculate the deviation of each item's log odds from the mean log odds of all items. To 

obtain the PROX. estimate of the item difficulty we multiply the deviation log odds by a constant Y.  The constant Y 

is obtained by  

 

               1 + V / 2.89 

    Y
2
  =  _____________        (11.22) 

               1 - UV / 8.35 

 

     where V is the variance of the log odds of items and 

           W is the variance of the log odds of abilities. 

 

 Clearly, we must first obtain the variance of log odds for abilities before we can complete our PROX. 

estimates for items.  To do this we must obtain the odds of subjects in each total score group obtaining their total 

score out of the total number of possible items.  For subjects in each total score group the odds are 

 

 

                                No. items passed 

     odds =    ____________________________     (11.23) 

                     No. items - No. items passed 

 

For example, for subjects that have a total score of 1, the odds of getting such a score are 1 / (11 - 1) = 1 / 10 = .1. 

 Note that if we divide the above numerator and denominator by the number of test items, the formula for the odds 

may be expressed as 

 

                       Pj 

    odds =    _________ 

                    1  -  Pj 

 

We obtain the logarithm of the score odds for each subject, and like we did for items, obtain the mean and variance 

of the log odds for all subjects.  The variance of subject's log odds is denoted as U in the "expansion" factor Y 

above.  A similar expansion factor will be used to obtain Prox. estimates of ability and is calculated using 

 

               1  +  U / 2.89 

   X
2
 =   _______________       (11.24) 

               1  -  UV / 8.35 

 

The Prox. values for items is now obtained by multiplying the expansion factor Y (square root of the Y
2
 value 

above) times the deviation log odds for each item.  The Prox. values for abilities is obtained by multiplying the 

corresponding expansion value X times the log odds for each score group.  The calculations are summarized below: 

 

ITEM   FAILED  PASSED   ODDS   LOG ODDS  DEVIATION   PROX. 

 

 1         51          76          .67   -0.3989               -0.61             -0.87 

 2         85          42        2.02     0.7050                0.49              0.70 

 3         62          65          .95   -0.0473               -0.26             -0.37 

  4           3        124          .02   -3.7217               -3.93             -5.62 

  5        44          83          .53   -0.6347               -0.84             -1.20 

 6      116          11      10.55     2.3557                2.15              3.08 

 7      103          24        4.29     1.4567                1.25              1.79 
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 8        61          66        0.92   -0.0788               -0.29             -0.41 

 9      106          21        5.05     1.6189                1.41              2.02 

10      112          15        7.47     2.0104                1.80              2.58 

11         34          93          .37   -1.0062               -1.22             -1.75 

 

     MEAN LOG ODDS DIFFICULTY = 0.21 

     VARIANCE LOG ODDS DIFFICULTY = 2.709 

TOTAL 

SCORE   PASSED   FAILED   ODDS   LOG ODDS    PROX. ABILITY 

 

 1         1         10              .10     -2.30         -3.93 

 2        2          9               .22     -1.50         -2.56 

 3         3          8               .38     -0.98         -1.71 

 4         4          7               .    -0.56         -0.94 

 5         5          6               .83     -0.18         -0.31 

 6         6          5             1.20       0.18           0.31 

 7         7          4             1.75       0.56           0.94 

 8         8          3             2.67       0.98           1.71 

 9         9          2             4.50       1.50           2.56 

10        10          1         10.00       2.30           3.93 

 

     MEAN LOG ODDS ABILITY = -0.28 

     VARIANCE LOG ODDS ABILITY = 1.038 

 

     Y EXPANSION FACTOR = 1.4315 

     X EXPANSION FACTOR = 1.709 

 

 Theoretically, the number of subjects in total score group j that pass item i are estimates of the item 

difficulty di and the ability bj of subjects as given by 

 

     bj - di = log[ pij / ( nj  - pij ) ] 

 

where pij  is the proportion of subjects in score group j that pass item i and nj is the number of subjects in score 

group j.  The Prox. estimates of difficulty and ability may be improved to yield closer estimates to the pij values 

through use of the Newton-Rhapson iterations of the maximum-likelihood fit to those observed values.  This 

solution is based on the theory that 

 

                         (bj - di) 

                        e 

              pij = _______________       (11.25) 

                             (bj - di) 

                     1 + e 

 

It is possible, using this procedure, that values do not converge to a solution.  The Rasch program included in the 

statistics package will complete a maximum of 25 iterations before stopping if the solution does not converge by 

that time. 

 

 If the Rasch model fits the data observed for a given item, the success and failure of each score group on an 

item should be adequately reproduced using the estimated parameters of the model.  A chi-squared statistic may be 

obtained for each item by summing, across the score groups, the sum of two products: the odds of success times the 

number of failures and the odds of failure times the number of successes.  This chi-squared value has degrees of 

freedom N - n where N is the total number of subjects and k is the total number of score groups.  It should be noted 

that subjects with scores of 0 or all items correct are eliminated from the analysis since log odds cannot be obtained 

for these score groups.  In addition, items which are failed or passed by all subjects cannot be scaled and are 

eliminated from the analysis. 
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Measuring Attitudes, Values, Beliefs 

 

 The evaluator of training workshops is often as interested in how participants “feel” about their training as 

well as how much they have learned and retained.  The testing theory presented above dealt primarily with the 

measure of knowledge and gave the methods for defining and testing the reliability and validity of those measures.  

In a similar manner, we may be interested in developing and administering instruments to measure such things as: 

(a) attitudes toward management 

(b) attitudes toward training experiences 

(c) attitudes toward protected classes (women, minorities) 

(d) attitudes toward alternative work arrangements 

(e) attitudes toward safety codes and/or practices 

(f) attitudes toward personnel in other departments 

 

 It is generally recognized that the way people feel about each other, their work environment and their work 

characteristics are important to their productivity and longevity on the job.  This section is devoted to helping the 

evaluator construct instruments to measure such attitudes. 

 

Methods for Measuring Attitudes 

 

 Most of you have completed at least one questionnaire of the following type: 

-----------------------------------------------------------------------------------------------------  

THESIS RESEARCH 

SURVEY 

 

DIRECTIONS: 

 

 Listed below are ten statements about thesis research.  Please indicate whether you agree or disagree with 

each statement.  Circle the A if you tend to agree with the statement or circle the D if you tend to disagree with the 

statement.  Do not spend too much time thinking about each statement.  Use your first impression.  GO AHEAD! 

 

A D 1. The research one does for his or her thesis may determine the line of 

  research they pursue the rest of their life. 

 

A D 2. The only reason theses are required is because the current faculty  

  had to do one in order to graduate. 

 

A D 3. Most theses make little contribution to the body of knowledge in a  

  discipline. 

 

A D 4. A thesis can demonstrate your ability to be creative and thorough in 

  conducting a research project. 

 

A D 5. Unless you almost have a major in statistics, its very difficult to complete a 

  useful thesis. 

 

A D 6. Reading a thesis is right up there with reading a telephone book for 

  pleasure. 

 

A D 7. Certain fields like clinical psychology, business and technology where the 

  graduate is not going to be a college professor should not require a 

  thesis. 

 

A D 8. Ten years after completing their degree, most students are ashamed of  
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  their thesis. 

 

A D 9. The whole master’s program is aimed at preparing the student to use 

  research; the thesis is simply evidence of having achieved that goal. 

 

A D 10. Many theses have had profound effect on subsequent research and 

  products. 

------------------------------------------------------------------------------------------------------  

 

 The question asked of you is this: “How do you score the responses given by an individual to this type of 

instrument?”  Do you simply add the “agrees” to get a total score?  What if some of the statements the subject agrees 

with are negative statements?  Do you “reverse” the scoring for those items?  How do you know which items are 

negative?  Would a group of judges have the same opinion as yours as to which are positive or negative items? 

 

 Clearly, when measuring an attitude, there is no actual “correct” or “incorrect” response!  In order to 

“score” an attitude instrument as that shown above, we must first establish the degree to which each item expresses 

an attitude that is favorable or unfavorable toward the “object” or topic for which the items are written.  Some items 

when agreed with may give evidence of a very strong attitude toward the positive or the negative end of a 

continuum.  If we can establish a scale value for each item that indicates the degree of  “positiveness” toward the 

object, we can then use those scale values to score the responses of a subject.  One of the ways of doing this is to use 

a group of “judges” to establish those scale values.  The following illustrates an instrument used to garner the 

opinion of judges about the “positiveness” of the items in the previous instrument: 

 

THESIS RESEARCH ATTITUDE INSTRUMENT 

JUDGE EVALUATION FORM 

 

DIRECTIONS: 

 

 You are being asked to determine the positiveness or negativeness each of the following items.  To do this, 

you will rate each item on a scale ranging from 1 to 7 where 1 indicates highly negative to 7 which indicates highly 

positive.  In order to have a common “frame of reference” for each item, assume that a graduate student  has agreed 

with the statement, then rate how positive or negative that student is toward dissertation research.  As an example, 

use the following item: 

 

A D Most theses in Education are irrelevant surveys of little importance. 

 

Assuming the student has marked AGREE (the underlined A) with the statement, how positive or negative do you 

think he (or she) is?  Make a mark on the scale below to indicate your answer. 

 

Highly    Neither Positive   Highly  

Negative   Or Negative    Positive 

____1____|____2____|____3____|____4____|____5____|____6____|____7____ 

 

PLEASE BEGIN! 

 

1. The research one does for his or her thesis may determine the line of 

 research they pursue the rest of their life. 

____1____|____2____|____3____|____4____|____5____|____6____|____7____ 

 

2. The only reason theses are required is because the current faculty had 

 to do one in order to graduate. 

____1____|____2____|____3____|____4____|____5____|____6____|____7____ 

 

3. Most theses make little contribution to the body of knowledge in a  

 discipline. 

____1____|____2____|____3____|____4____|____5____|____6____|____7____ 

 

4. A thesis can demonstrate your ability to be creative and thorough in 
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 conducting a research project. 

____1____|____2____|____3____|____4____|____5____|____6____|____7____ 

 

5. Unless you almost have a major in statistics, its very difficult to complete a 

 useful thesis. 

____1____|____2____|____3____|____4____|____5____|____6____|____7____ 

 

 

6. Reading a thesis is right up there with reading a telephone book for 

 pleasure. 

____1____|____2____|____3____|____4____|____5____|____6____|____7____ 

 

7. Certain fields like clinical psychology, business and technology where the 

 graduate is not going to be a college professor should not require a thesis. 

____1____|____2____|____3____|____4____|____5____|____6____|____7____ 

 

8. Ten years after completing their doctorate, most students are ashamed of  

 their thesis. 

____1____|____2____|____3____|____4____|____5____|____6____|____7____ 

 

9. The whole doctorate program is aimed at preparing the student for research; 

 the thesis is simply evidence of having achieved that goal. 

____1____|____2____|____3____|____4____|____5____|____6____|____7____ 

 

10. Many theses have had profound effect on subsequent research and 

 products. 

____1____|____2____|____3____|____4____|____5____|____6____|____7____ 

 

 

By analyzing the responses of a group of judges, the median or mean rating of those judges can be used to determine 

a scoring weight for each item that can be used in scoring the subjects for whom we wish to obtain an estimate of 

their attitude.  One of the methods often used to analyze these judge’s ratings is called the method of successive 

intervals (see Edwards, 1951).  A computer program on you statistics disk permits you to analyze such responses.  

Consult the program manual for directions on its use. 

 

Affective Measurement Theory 

 

 Most classroom teachers first learn to develop tests of achievement over the content which they are 

engaged to teach.  These tests fall in what is known as the Cognitive Domain of testing.  Two additional areas of 

testing are, however, often just as important.  These areas are the Psychomotor Domain and the Affective Domain.  

The Psychomotor Domain includes testing of fine and gross motor coordination, strength and accuracy.  The 

affective domain includes the measurement of attitudes, values and opinions of subjects.  Typically, we are 

interested in measuring an attitude on one major "latent" variable such as an attitude toward school, an attitude 

toward minorities, an attitude toward some political issue, etc.  In such cases, all of the items of the instrument used 

to measure this attitude are related, in some manner, to the major latent variable.  In the following discussion, we 

will make this assumption of unidimensionality, that is, that all items are directly related to the same, underlying 

construct. 

Thurstone Paired Comparison Scaling 

 

 A variety of item types have been developed to measure attitudes and values.  Two major forms are used 

most commonly: (a) the agree/disagree format and (b) the "Likert" scale type involving a degree of agreement or 

disagreement, usually on a five or more  point scale.  In the case of agree/disagree statements, the subject is simply 

asked to indicate whether they agree or disagree to each statement listed.  The statements are written to represent 

both positive or negative attitudes toward the object of the measurement.  For example, if we were measuring an 

attitude toward "going to college" we might have the following statements: 
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     1.   College degrees are extremely important if your goal is to be a professional. 

     2.   College graduates are snobish and have lost touch with humanity. 

     3.   If you really want to make money, you can easily do so without going to college. 

     4.   So many people are going to college, a college degree doesn't mean much any  

 more. 

 

If, on the other hand, we were using the Likert form of the statements, we will tell each subject to mark how strongly 

they agree (or disagree) with each statement using a scale such as 

 

 
     _____|_____|_____|_____|_____|_____|_____|_____|_____ 

Strongly                                            Strongly 

Disagree                                            Agree 

 

 You can see by the nature of the items, that there is no "correct" or "incorrect" response to each statement.  

Since we have no clear right or wrong answer, this poses a problem for "scoring" the responses of the instrument 

and obtaining a measure of the subject's attitude.  We could arbitrarily mark those items which we feel reflect a 

positive attitude as a +1 if the subject "agreed" with the statement (or marked closer to the agree on a Likert scale), 

and score 0 if they failed to agree to a positive item.  For negatively stated items we could similarly score a subject 

as 0 if they agreed with the negative item and score them a +1 if they disagreed with the negative item.  The sum of 

these individual item scores, like our cognitive tests, would be the measure of the subject's attitude.  Unfortunately, 

what you perceived as a "negative" or "positive" item may not be what I see for the same item!  In fact, a group of 

judges might vary considerably in how "negative" or "positive" they felt each statement was toward the attitude 

object.  Because of the ambiguity of attitude statements and because we desire to produce measurements for subjects 

which fit at least an interval scale of measurement, a variety of methods have been developed to "scale" the items 

used in affective instruments. 

 

 One of the first methods developed to determine the score values of items that subjects are asked to agree 

or disagree with is known as the Thurstone Paired-Comparisons Scaling method.  This method utilizes a group of 

judges who are asked to compare each statement with every other statement and simply indicate which statement in 

each pair is more favorable toward the object if a subject were to agree with each one.  For example, item 1 and item 

2 of the above examples would be compared.  If a judge felt that agreeing with item 1 indicated more favorableness 

toward going to college than agreeing with item 2, he would indicate item 1 is more favorable.  By employing a 

reasonably large (say N > 20) number of judges, an average of the number of times judges selected each item over 

another can be obtained.  If we assume these judgments by the judges are normally distributed around the "stimulus 

value" of each item, that is, the degree of favorableness of the items, we can obtain an estimate of the stimulus value 

for each item. 

 

     Let's consider an example of directions for the above 4 items that might be given to 30 judges: 
 

DIRECTIONS:  Listed above are four statements which reflect 

varying degrees of positiveness toward attending college. 

Please indicate to the left of each pair of statements, 

which item you feel reflects a more positive attitude toward 

attending college. 

_____ A.  Item 1     B.  Item 2 

_____ A.  Item 1     B.  Item 3 

_____ A.  Item 1     B.  Item 4 

_____ A.  Item 2     B.  Item 3 

_____ A.  Item 2     B.  Item 4 

_____ A.  Item 3     B.  Item 4 

 

Following administration of the above to 30 judges, we might obtain the following matrix.  The number in the cells 

of this matrix reflect the number of judges which felt the item listed at the top was MORE favorable than the item 

listed to the left. 
 

                      Judgement Matrix 
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ITEM      1         2         3         4 

 

1        10         1         3         7 

 

2        19        10        18        16 

 

3        17         2        10        13 

 

4        13         4         7        10 

 

Notice in the above matrix that the diagonal values represent a comparison of a single item with itself.  Since such 

comparisons are not actually made, we assume that one half of the time the item would be judged more positive and 

one half the time less positive.  Also note that the values below the diagonal are the number of judges in the sample 

minus the value for the corresponding items above the diagonal. 

 

 To obtain the "scale value" of each item, we next convert the numbers of the above matrix first to the 

proportion of total judges and then we convert the proportions to z scores under the unit normal distribution. The 

matrices corresponding to the above example would be: 

 
                  Proportion of Judgements 

 

ITEM      1         2         3         4 

 

1       .50       .05       .15       .35 

 

2       .95       .50       .90       .80 

 

3       .85       .10       .50       .15 

 

4       .65       .20       .85       .50 

 

          z Scores for Proportions of Normal Curve 

 

ITEM      1         2         3         4 

 

1        0.00     -1.65     -1.04     -0.39 

 

2        1.65      0.00      1.28      0.84 

 

3        1.04     -1.28      0.00     -1.04 

 

4         .39     - .84      1.04      0.00 

 

Sum      3.08     -3.77      1.28     - .59 

 

Average   .77     - .94       .32     - .15 

 

Scale    1.71      0.00      1.26       .79 

Value 

 

 The last three rows above are simply the column sums, the column average, and the average plus the 

absolute value of the smallest column average.  Since we are constructing a psychological scale, the mean and 

standard deviation of the scale values is arbitrary.  We simply desire to build estimates of the intervals among the 

stimuli (items).  The last row is labeled Scale Value.  It reflects the average difference of the distance of each item 

from the other items on our psychological scale.  The item (number 2) with the lowest scale value is the one which is 

"most negative" toward attending college.  The item (number 1) with the largest value is the one most positive 

toward attending college.  The scale values reflect the discriminations of the judges, NOT their attitudes.  We simply 

used the judges to acquire "weights" for each item that reflect the degree of positivism or negativism of each item!  
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Now that we have these scale values however, we can use them to actually measure the attitude of subjects toward 

attending college.  To do this, our subjects would receive instructions something like 

 

 
Directions:  Each statement below reflects an attitude 

               about college.  You are to circle the A if 

               you agree with the statement or circle the D 

               if you disagree with the statement. 

               Go ahead. 

 

     A    D    1.   College degrees are extremely important 

                    if your goal is to be a professional. 

     A    D    2.   College graduates are snobish and have 

                    lost touch with humanity. 

     A    D    3.   etc. 

 

 Once a subject has indicated agreement or disagreement with the items, the subject's total score is 

calculated by simply averaging the scale value of those items with which they agreed.     The Paired-Comparisons 

procedure described above makes several assumptions.  First, it assumes that the judges discriminations among the 

items are normally distributed. Secondly, it assumes that the variance of those discriminations are equal.  Third, it 

assumes that the items all measure, to varying degrees, the same underlying attitude.  Fourth, it assumes that the 

correlation among the judges discriminations for item pairs are all equal.  Fifth, it assumes the mean and standard 

deviation of the scale values are arbitrary and the scale reflects only distances among items, not absolute amounts of 

an attitude. 

  

 You have probably already noticed that if you have very many items, the number of item pairs that judges 

are required to judge becomes large.  The number of unique pairs is obtained by k(k-1)/2 where k is the number of 

items.  For example, if you constructed 20 statements, the judges would have to make 20(19)/2 = 190 

discriminations!  Obviously you will try the patience of judges if your instrument is very long.  A more convenient 

method of estimating item scale values is described in the next section. 

 

 Incidentally, if an item is judged to be higher than all other items by all judges or lower than all items by all 

judges, you would end up with a proportion of 1.0 or 0.0.  The z scores corresponding to those proportions is plus or 

minus infinity and therefore could not be used to obtain an average.  Such items may simply be eliminated or the 

obtained proportions changed to something like .99 or .01 as estimates of "what they might have been" if you had a 

much larger sample of judges. 
 

Successive Interval Scaling Procedures 

 

 The Paired-Comparisons procedure described in the last section places great demands on judges if the 

number of items in an affective instrument is large.  Yet we know that instruments with more items tend to give a 

more reliable estimate of an individual's attitude.  The Successive Intervals scaling procedure provides a means of 

obtaining judges discriminations for k items in k judgments.  The resulting scale values of items judged by both the 

Paired-Comparisons and Successive intervals methods correlate quite highly. 

  

 In the successive intervals scaling method, judges are asked to categorize statements on a continuum of an 

attribute like favorable-unfavorable.  Typically five to nine categories are used, always using an odd number of 

categories.  Utilizing the example from the previous section in which we are scaling items for measuring subjects 

attitudes toward attending college, a sample instruction to judges might look like the following: 
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     Directions:  Each item below reflects some degree of 

          favorableness or unfavorableness toward attending 

          college.  Indicate the degree of favorableness in 

          each item by making a check in one of the seven 

          categories ranging from highly unfavorable to 

          highly favorable. 

 

     1.   College degrees are extremely important if your 

          goal is to be a professional. 

          |_____|_____|_____|_____|_____|_____|_____| 

          Highly                               Highly 

          Unfavorable                          Favorable 

 

     2.   College graduates are snobbish and have lost 

          touch with humanity. 

          |_____|_____|_____|_____|_____|_____|_____| 

          Highly                               Highly 

          Unfavorable                          Favorable 

 

     3.   etc. 

 

 If we assume again that we have a reasonably large sample of judges evaluating each item of our 

instrument, and we assume that the classifications of items on the continuous scale tend to be normally distributed, 

we employ computations similar to the Paired-Comparison method for estimating scale values.  For our example 

above, we might obtain, for the group of judges, the following classifications: 
 

             Frequency of Item Classifications 

                               

Category:      1    2    3    4    5    6    7 

Item 

1              0    1    1    3    8    6    1 

2              2    7    6    4    1    0    0 

3              1    3    6    6    3    1    0 

4              1    5    9    4    1    0    0 

 

 To obtain scale values by the method of successive intervals, we next obtain the cumulative frequencies 

within each item, convert those to cumulative proportions, and then convert the cumulative proportions to z scores.  

For example: 
           Cumulative Frequencies and Proportions 

 

Category       1    2    3    4    5    6    7 

Item: 

1    cf        0    1    2    5    13   19   20 

     cp        0    .05  .10  .25  .65  .95  1.0 

 

2    cf        2    9    15   19   20   20   20 

     cp        .10  .45  .75  .95  1.0  1.0  1.0 

 

3    cf        1    4    10   16   19   20   20 

     cp        .05  .20  .50  .80  .95  1.0  1.0 

 

4    cf        1    6    15   19   20   20   20 

     cp        .05  .30  .75  .95  1.0  1.0  1.0 

 

       z Score Equivalents to Cumulative Proportions 

                               

Category       1      2      3      4      5      6      7 

Item 
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1              -   -1.65  -1.28  -0.67   0.38   1.65     - 

2           -1.28  - .13    .68   1.65     -      -      - 

3           -1.65  - .85    .00    .85   1.65     -      - 

4           -1.65  - .52    .68   1.65     -      -      - 

 

 

          Differences Between Adjacent Categories 

 

Difference    2-1     3-2     4-3     5-4     6-5     7-6 

Item: 

1                     .37     .61    1.05    1.27 

2             1.15    .81     .97 

3              .80    .85     .85     .80 

4             1.13   1.20     .97 

 

Sum           3.08   3.23     3.40   1.85    1.27 

N              3      4        4      2       1 

Mean          1.03    .81      .85    .93    1.27 

Cum. Avg.     1.03   1.84     2.69   3.62    4.89 

 

 Scale values for the items which have been judged and analyzed by the method of successive intervals is 

obtained using the formula for the median of an interval, that is: 

 

                                        (.5 - ΣPb)   _ 

        Scale Value = LL + -----------  W     (11.26) 

                                          Pw 

 

                    where LL is the lower limit of the interval, 

                    Pb is the Probability below the interval, 

                    Pw is the Probability in the interval, 

                           _ 

                    and W is the average interval width. 

 

 The scale value of items is the median value of the item on the scale defined by the cumulative average of 

the mean z score differences between categories.  The scale values for the example above are therefore obtained as 

follows: 

 

     Scale value for item 1: 

 

1. First, find the category in which the cumulative proportion is just less than .50, that is, that category just below the 

category in which the cumulative proportion is .5 or greater.  For item 1 this is the category 4 (cumulative proportion 

= .25. 

2. Next, obtain the cumulative average scale value for the category difference of the category just identified and the 

one below it.  In this case, the cumulative average for the difference 4-3 which is 2.69.  This represents the lower 

limit of the category in which the scale value for item 1 exists. 

3. The value of Pb is the cumulative proportion up through the category identified in step (1) above, that is, .25 in our 

example. 

4. The Pw is the proportion within the interval in which the median is found.  In our example, it is the proportion 

obtained by subtracting the proportion up to category 5 from the proportion in category 5, that is, .65 - .25 = .40 . 

5. Obtain the width of the interval next.  This is the average z score differences in the interval in which the median is 

found.  In this case the interval difference 5-4 has an average width of 0.93. 

6. Substitute the values obtained in steps (1) - (5) in the equation to obtain the item scale value.  For item 1 we have 

 

                                 (.50 - .25) 

           S1  =  2.69 + ------------- 0.93  =  3.2700 

                                 (.65 - .25) 

 

In a similar manner, the scale values for items 2 through 4 are: 
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                                   (.50 - .45) 

           S2  =  1.03 + ------------ 0.81  =  1.1650 

                                  (.75 - .45) 

 

                                 (.50 - .20) 

           S3  =  1.03 + ------------ 0.81  =  1.8343 

                                 (.50 - .20) 

 

 

                                 (.50 - .30) 

           S4  =  1.03 + ------------ 0.81  =  1.3900 

                                 (.75 - .30) 

 

 

 Several points should be made concerning the above computations.  First note that the initial seven 

categories that were used represent midpoints of intervals.  The number of judges placing an item within each 

category are assumed to be distributed uniformly accross the interval represented by the midpoint (category 

number).  The calculation which involves subtracting the z scores in one category from those in the next higher 

category, and then averaging those values, establishes the distance between the midpoints of our original categories.  

In other words, there is no assumption of equal widths - we in fact estimate the interval widths.  Once the interval 

widths are estimated, the accumulation of those widths describes the total scale of our measurements.  You will have 

noticed that if the total number of categories is originally k (7 in our example), there will be k-2 differences obtained 

for adjacent categories.  We have no way of estimating the width of the first and last category since there are no 

values below or above them.  We can see this if we draw a schematic of the scale: 

 
                         Midpoints 

         1       2       3       4       5       6      7 

_____|_______|_______|_______|_______|_______|_______|_____ 

         |_______|_______|_______|_______|_______| 

             a       b       c       d       e 

                         Intervals 

 

We can illustrate where each item lies on the obtained scale by "plotting" the scale value of each item: 

 
Item:          3   2 4              1 

         |_______|_______|_______|_______|_______| 

        0.0     1.0     2.0     3.0     4.0     5.0 

 

 We can see that item 1 was judged more positive than the other three items and lies considerably further 

from the other items.  Items 2,3 and 4 are more similar in scale value with item 3 being judged the most negative of 

the four items. 

 

 Once the scale values of items are known, the same practice as employed in Paired-Comparisons 

methodology is used to obtain measures of individuals.  The statements are presented to the subjects and the scale 

values of those items to which the subject agrees is averaged.  The obtained average reflects the attitude of the 

subject. 

 

 

Guttman Scalogram Analysis 

 

 If the items used to measure an attitude are all reflective of the same underlying attitude but to varying 

amounts, then subjects that vary on that attitude should agree or disagree to the items in a specific patterm.  As an 

example, assume we have 5 items which measure the degree of positivism toward maintaining U.S. troops in a base 

in Japan.  Now assume that these items are ranked in the order to which they evoke an "agree" response by six 

people that vary in their attitude toward maintaining the troops in Japan.  If there is consistency of measurement, and 
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we assign a "1" if a subject "agrees" and "0" if the subject "disagrees" with an item, we would expect that the 

following matrix of observations might be recorded: 

 
                Rank of Item on the Attitude 

                  1     2     3     4     5      Score Rank 

Subject 

   1              1     1     1     1     1        5     1 

   2              0     1     1     1     1        4     2 

   3              0     0     1     1     1        3     3 

   4              0     0     0     1     1        2     4 

   5              0     0     0     0     1        1     5 

   6              0     0     0     0     0        0     6 

 

In our example, subject 1 has agreed with all five statements and subject 6 has disagreed with all items.  Note the 

items have been arranged in order from most negative toward maintaining troops to most positive toward retaining 

troops in Japan.  In addition, the subjects have been arranged from the subject with the most positive attitude down 

to the subject with the least positive (most negative) attitude.  The matrix of the responses reflects perfect agreement 

or order of the responses.  In "real" life, we seldom get such a perfect pattern of responses.  A more typical response 

pattern might look more like: 
 

          Items Ordered by Total "Agree" Responses 

              1       2       3       4       5 

Response     1 0     1 0     1 0     1 0     1 0     Score 

 

Subject 

   1         x       x       x       x       x         5 

   2           x     x       x       x       x         4 

   3         x         x     x       x       x         4 

   4           x     x         x     x       x         3 

   5           x       x       x     x       x         2 

   6           x       x     x         x     x         2 

   7           x       x       x       x     x         1 

   8           x       x       x     x                 1 

   9           x       x       x       x       x       0 

  10           x       x       x       x       x       0 

 

sums         2 8     3 7     4 6     6 4     7 3 

Proportion .2  .8  .3  .7  .4  .6  .6  .4  .7  .3 

 

 

In this sample of ten subjects, we have several subjects with the same total score as another subject but a different 

pattern of "agree" or "disagree" to the statements.  There is not perfect agreement among the items in differentiating 

the attitudes of the subjects!  Note that we have recorded the response of each subject in one of two columns beneath 

each item.  The sum or proportion of the "agree" or 1 responses is totaled accross subjects to identify the order of the 

"positivism" of the item.  Item 5 is the item which received the greatest number of "agree" responses while item 1 

received the fewest. 

 

 If we have "perfect" reproducibility in an instrument of k items, we would be able to perfectly reproduce 

the individual item responses of an individual given their total score (number of items to which they agree).  If their 

is inconsistency of measurement, we can only estimate the likely response to each item.  In order to make such 

estimates, it is necessary to identify a "cutting" point for each item which identifies that point where the pattern of 

agree/disagree responses most likely changes.  This point is one where the number of errors is a minimum.  An error 

is counted whenever a subject below the cutting score agrees with a statement or whenever a subject above the 

cutting point disagrees with the statement.  For the above table, we have inserted the cutting scores which give the 

minimum error counts: 

 
          Items Ordered by Total "Agree" Responses 

              1       2       3       4       5 
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Response     1 0     1 0     1 0     1 0     1 0     Score 

 

Subject 

   1         x       x       x       x       x         5 

   2           x     x       x       x       x         4 

   3         x__       x     x__     x       x         4 

   4           x     x__       x     x       x         3 

   5           x       x       x     x__     x         2 

   6           x       x     x         x     x         2 

   7           x       x       x       x     x__       1 

   8           x       x       x     x         x       1 

   9           x       x       x       x       x       0 

  10           x       x       x       x       x       0 

 

sums         2 8     3 7     4 6     6 4     7 3 

Proportion .2  .8  .3  .7  .4  .6  .6  .4  .7  .3 

Errors       0 1     0 1     1  0    1 0     0 0    Σe=4 

 

There are actually several choices for cutting scores on each item which minimize the sum of the errors.  L. Guttman 

(see Edwards, p. 182) has developed a coefficient which expresses the degree of reproducibility of a set of items. It 

is obtained as one minus the proportion of errors in the total number of responses.  For the above data, we would 

obtain the coefficient of reproducibility as 

 

                Rep = 1.0 - 4/50  =  0.92 

 

     Because the cutting scores in the above matrix may be made at several points, the response pattern expected of a 

subject with a given total score might vary from solution to solution.  In order to obtain a method of setting cutting 

scores that is always the same and thus yields a means of accurately predicting a response pattern, Edwards 

(Edwards, pgs. 184-188) developed another method for obtaining cutting scores.  This method is illustrated for the 

same data in the Fig. below: 
 

          Items Ordered by Total "Agree" Responses 

              1       2       3       4       5 

Response     1 0     1 0     1 0     1 0     1 0     Score 

 

Subject 

   1         x       x       x       x       x         5 

   2           x     x       x       x       x         4 

           ------------------------------------- 

   3         x         x     x       x       x         4 

           ------------------------------------- 

   4           x     x         x     x       x         3 

           ------------------------------------- 

   5           x       x       x     x       x         2 

   6           x       x     x         x     x         2 

           ------------------------------------- 

   7           x       x       x       x     x         1 

           ------------------------------------- 

   8           x       x       x     x         x       1 

   9           x       x       x       x       x       0 

  10           x       x       x       x       x       0 

 

sums         2 8     3 7     4 6     6 4     7 3 

Proportion .2  .8  .3  .7  .4  .6  .6  .4  .7  .3 

 

 

 In the above display of our sample data, we have used the proportion of 1 responses (agree) to draw our 

cutting points.  For example, in item 1, 20 percent of the subjects agreed with the item.  The cutting score was then 

drawn below 20 percent of all the responses (both agree and disagree).  This procedure was used for each item.  
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Errors are then counted whenever a response disagrees with the pattern expected.  For example, both subjects 1 and 

2 are expected to have a pattern of responses 1 1 1 1 1 but subject 2 has 0 1 1 1 1 as a pattern.  One response 

disagreed with the expected so the error count is 1 for subject 2.  Subject three is expected to have a response pattern 

of 0 1 1 1 1 but in fact has a response pattern of 1 0 1 1 1 .  Since there are two items that disagree with the expect 

pattern, the error count for subject 3 is 2. A similar procedure is followed for each subject.  The expected pattern for 

each total score is shown below along with the number of errors counted for subjects with those total scores: 
 

Total Score    Expected Pattern    Subject   No. of Errors 

 

    5          1  1  1  1  1         1            0 

    4          0  1  1  1  1         2            0 

                                     3            2 

    3          0  0  1  1  1         4            2 

    2          0  0  0  1  1         5            0 

                                     6            2 

    1          0  0  0  0  1         7            0 

                                     8            2 

    0          0  0  0  0  0         9            0 

                                    10            0 

 

                                             Σe = 8 
 

              Rep = 1.0 - ( 8 / 50) = 0.84 

 

 This computation of the coefficient of reproducibility is a measure of the degree of accuracy with which 

statement responses can be reproduced on the basis of the total score alone!  It is this latter method with is used in 

the program GUTTMAN found in the LazStats program.     The proportion of subjects agreeing or disagreeing with 

each item affects the degree of reproducibility.  If very large or very small numbers of subjects agree to an item, the 

reproducibility is increased.  The minimal coefficient of reproducibility may be obtained by the larger of the two 

values (a) proportion agreeing or (b) proportion disagreeing with a statement and dividing by the number of items.  

In our example these values are .8, .7, .6, .6 and .7.  The minimal marginal reproducibility is therefore 

 

              .8 + .7 + .6 + .6 + .7 

              -----------------------  =  0.68 

                         6 

 

The response pattern corresponding to this model response pattern is 0 0 0 1 1 .  If we were to predict each subjects 

responses with this pattern and count errors, the coefficient of reproducibility would be .68!     The Guttman 

Coefficient of reproducibility may be thought of as an index somewhat comparable to the reliability coefficient.  A 

value of one would indicate a set of items that are fully consistent in measuring differences among subjects. 

 

 In the methods of paired comparison and successive intervals, we utilized a group of judges to estimate 

scale values for items.  These scale values were then used to obtain the scores for subjects administered the 

statements.  With the Guttman scaling method, we do not use judges but simply the responses of the subjects 

themselves as a basis for determining their attitude scores.  We simply assign 1 to the item with which they agree 

and 0 to those with which they disagree.  If the instrument has a high coefficient of reproducibility, then the total of 

the subject response codes, i.e. their total score, should be directly interpretable as a measure of their attitude.  The 

subject's total score may be divided by the number of items to obtain the proportion of items to which the subject 

agreed.  It is assumed that all items reflect a varying degree of positivism to the attitude object (e.g. troops in Japan) 

and therefore the subject's total score based on those items also reflects the subject's attitude.  The scale value of 

each item is the cutting score for that item.  In the above example, we may place the items on the scale as follows: 
 

Item         1   2   3       4   7 

     |_______|_______|_______|_______|_______| 

     0      .2      .4      .6      .8      1.0 

         Proportion of "Agree" Items 
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The items to which few subjects "agree" is a more negative item than the item to which a larger number of subjects 

agree.  The proportion of items an individual subject agrees with is an indication of the subjects positivism toward 

the attitude object. 

 

Likert Scaling 

 

 Also called the method of Summated Ratings, the Likert scaling method, like the Guttman method above, 

does not use judges to determine the scale value of items.  Subjects are directly measured on each statement by 

indicating their degree of agreement, usually using a five-point scale.  The statements administered are statements 

judged only by the person constructing the items as either a "favorable" or "unfavorable" item.  If a five point scale 

is used such as 
 

     |_______|_______|_______|_______|_______| 

     Strongly                         Strongly 

     Disagree                         Agree 

 

the lowest category is assigned a value of 0, the next category a 1, etc. up to the last category which would be 

assigned the value 4.  If the item is an "unfavorable" item toward the attitude object, the category scores are 

reversed, that is, the first category assigned 4, the next 3, etc.  To obtain a subject's score, one simply adds the values 

of the categories checked by the subject.  Normal item analysis procedures may be used to eliminate items which do 

not measure the attitude consistent with other items.  The point-biserial correlation of the item with the total score is 

the typical criterion used.  If the item correlates quite low with the total score, the item should be eliminated. 

 

 It is important to note that the scores obtained by the Likert method cannot be interpreted without reference 

to a comparison group.  Since the item scale values are not obtained, and the distances among the items is therefore 

unknown, the total scores are only meaningful in reference to a comparison group.  For example, say that a scale of 

20 items is administered to a subject and the subject's score is 5.  This score cannot be directly interpreted.  It may 

be that in one group of subjects this is a highly positive score while in another group, a very low score.  We cannot 

say the score of 5, by itself, reflects a positive or negative attitude toward the object.   It has been found in previous 

research that scores obtained on a Likert scale correlate quite high with the same items scaled and scored by the 

Thurstone method.  If the interest of the researcher is to use the attitude measures to describe its relationship with 

some other variables through correlation methods, then the Likert method is cost-effective.  If, on the other hand, the 

researcher desires to interpret individual attitudes as being positive or negative toward some object, then a method 

such as the paired-comparison or successive interval scaling method should be employed. 
 

Semantic Differential Scales 

 

 Osgood, et al (1971) developed a measure of the "meaning" attached, through a theorized learning model, 

to a variety of stimuli including both physical objects as well as "ideas" or concepts.  Their measure is based, briefly, 

on the notion that certain words have become associated with subject's responses to objects through conditioning 

and generalization of conditioning.  They observed that in many situatations, people, for example, might use words 

such as heavy, dark, gloomy to describe some classical music while words such as bright, up, shiny, happy might 

describe other music.  These words which are also used to describe many objects appear to have general utility for 

subjects in describing their "feelings" about an object.   Osgood and his colleagues utilized factor analysis 

procedures to identify subsets of items which appear to measure different dimensions of meaning.  Their goal was to 

identify a set of bipolar adjectives which describes the "semantic space" of given objects.  This space is described by 

orthogonal axis of the bipolar adjectives.  The objects lie within this space at varying distance from the origin 

(intensity) and in specific directions (description).  Three major dimensions of the semantic space are typically used.  

These are (I) Evaluation, (II) Activity, and (III) Potency. 

 

 The semantic differential scale is constructed of those bipolar adjectives (e.g. hot - cold) which are 

demonstrated to differentiate the meaning attached by individuals to a given object (e.g. school attendance).  Thus 

the first problem in constructing a semantic differential scale is the selection of bipolar adjective pairs that measure 

predominantly one dimension of the semantic space and differentiate among individuals that vary in intensity of 

feeling on that dimension.  Once the adjectives have been identified and their discriminating potential demonstrated, 
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the selected items are utilized to measure the feelings (attitudes or values) that individual subjects attach to the 

object. 

 

     Typical instructions to subjects are as follows: 

 
Directions:   This instrument is designed to measure the 

meaning of certain things by having people judge them with a 

series of scales using word opposites.  Make your judgments 

on the basis of what these things mean to YOU.  Below you 

will see the thing to be judged in the center of the page. 

You are to rate this object on each of the scales below the 

object.  Here is how you use the scales: 

 

If you feel the object in the center is very closely related 

to one end of the scale, you should place your check-mark as 

follows: 

 

     fair__X__|_____|_____|_____|_____|_____|_____unfair 

 

                         or 

 

     fair_____|_____|_____|_____|_____|_____|__X__unfair 

 

If you feel the concept is quite closely related to one or 

the other end of the scale (but not extremely), you should 

place your check-mark as follows: 

 

     strong_____|__X__|_____|_____|_____|_____|_____weak 

 

                         or 

 

     strong_____|_____|_____|_____|_____|__X__|_____weak 

 

If the object seems only slightly related to one side as 

opposed to the other side (but is really not neutral), then 

you should check as follows: 

 

     active_____|_____|__X__|_____|_____|_____|_____passive 

 

                         or 

 

     active_____|_____|_____|_____|__X__|_____|_____passive 

 

If you consider the concept to be neutral on the scale, both 

sides equally associated with the object, or if the scale is 

completely irrelevant, unrelated to the concept, then you 

should place your check-mark in the middle space: 

 

     safe_____|_____|_____|__X__|_____|_____|_____dangerous 

 

GO AHEAD! 

 

SCHOOL 

 

1.   good _____|_____|_____|_____|_____|_____|_____ bad 

 

2.   kind _____|_____|_____|_____|_____|_____|_____ cruel 

 

3.   high _____|_____|_____|_____|_____|_____|_____ low 
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4.   hard _____|_____|_____|_____|_____|_____|_____ soft 

 

5.   heavy_____|_____|_____|_____|_____|_____|_____ light 

 

6.   sane _____|_____|_____|_____|_____|_____|_____ insane 

 

7.   near _____|_____|_____|_____|_____|_____|_____ far 

 

8.   etc. 

 

 

 Typically, 3 or more items are selected from those items which "load" heaviest on each of the factors or 

dimensions of the semantic space which the researcher wishes to measure.  More items from a given dimension 

yields a more reliable estimate of that dimension.  Note that if items from more than one factor are used, a profile of 

scores may be obtained for each individual.  The user of the semantic differential scales may choose, of course, to 

measure on only one dimension.  Items may also be included that are not previously known to load on a particular 

dimension but are felt by the test constructor to be relevant for measureing the meaning or attitude toward a given 

object.  Later analyses may then be performed to determine the extent to which these other items load on the 

dimensions of the semantic space. 

 

 While it is assumed that the scales (items) of the semantic differential scales are equal interval scales, this 

assumption may be checked by using the successive interval scaling program to estimate the interval widths of the 

individual items.  Dimension scores for individuals are usually computed by simply summing or averaging the scale 

values of each item where the scale values are -3, -2, -1, 0, +1, +2 and +3 corresponding to the seven categories 

used.  Notice that the values may need to be reversed if the "negative" synonym is listed first and the "positive" 

listed last. 

 

Behavior Checklists 

 

 The industrial technology evaluator will sometimes utilize a behavior checklist form to record observations 

regarding work habits, verbal interactions, or events considered important to a given study.  In industrial training 

situations, the evaluator may record such details as the number of steps taken during a given operation, the 

frequency of lifting objects from below waist level, the number of manual adjustments to equipment, etc. related to 

the training.  Time and motion studies may provide valuable information for reducing fatigue and injury, reducing 

operating times for processes, and suggest alternative methods of operation.  In evaluating trainer performance, a 

behavior checklist may “zero in” on specific behaviors potentially detracting from the effectiveness of the instructor 

as well as identifying those important to retain and reinforce. 

 

 As an example of a behavioral checklist, consider the following set of “items” by which trainees record 

their observations about behaviors of a trainer: 

---------------------------------------------------------------------------------------------------------------------------------  

Behavior of the Trainer 

 

Directions:  Each item below describes a behavior that you might have observed during the training session.  For 

each item indicate whether or not the behavior occurred and indicate how you felt about the behavior.  Express your 

feeling about the behavior by checking one of the numbers between 1 and 5 where 1 indicates “Highly undesirable”, 

2 indicates slightly undesirable, 3 indicates neither desirable or undesirable, 4 indicates somewhat desirable and 5 

indicates “Definitely desirable”. 

 

                      ITEM    

                                                                         OBSERVED?           FEELING 

                                                                             (Y OR N)  1     2     3     4     5 

1. Embarrassed a trainee.                        ____________  __   __   __   __   __ 

2. Arrived late for a session.                   ____________ __   __   __   __   __ 

3. Showed enthusiasm for the subject.    ____________ __   __   __   __   __ 

4. Showed a good sense of humor.          ____________ __   __   __   __   __ 

5. Showed sensitivity to the learner.       ____________ __   __   __   __   __ 
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6. Got off the subject.                             ____________    __   __   __   __   __ 

7. Talked over my head.                          ____________ __   __   __   __   __ 

8. Reviewed what we had learned.          ____________ __   __   __   __   __ 

9. Handed out helpful reading material.  ____________  __   __   __   __   __ 

10. Used inappropriate English.                ____________ __   __   __   __   __ 

 

 

To “score” the above type of data, the evaluator may multiply the value of the “feeling” scale checked by one (1) if 

the observer marked “y” to observing it or zero (0) if not observed.  The higher the score, the “better” the trainer 

behaved in the view of the trainees. 

 

 

Codifying Personal Interactions 

 

 In some situations, it is necessary to evaluate the content of interpersonal communications.  For example, to 

create a work environment free of discrimination, the conversations among employees may be coded for words, 

phrases, sentences, gestures, or behaviors which may be construed as sexist, discriminatory or derogatory to other 

individuals.  Unfortunately, one cannot always sit and take notes while others are conversing.  Use of tape recording 

without the permission of those recorded is also inappropriate.  Often the best one can do is to take note of a part of 

a conversation overheard, record one’s observations as soon as possible afterwards, and then, if possible, verify what 

was heard with one or more persons that may also have heard the conversation.  Clearly, this is an emotionally laden 

and sensitive area!  One must use extremely good judgment.  Rather than recording specific “offenders” names, for 

example, one may use code letters or numbers to represent individuals.  One may also encode words, gestures, etc. 

within categories.  Let’s consider an example where a female employee has complained of sexual harassment in a 

business which employs primarily men and very few women in packaging meat for retail store distribution.  A 

consultant is hired to evaluate the work place for evidence of a problem with sexual harassment.  The evaluator first 

does a “walk-through” to garner any graphical evidence of harassment such as : 

 

 g1 = sexually explicit graffiti or pictures in view in restrooms 

 g2 = written material making explicit sexual innuendoes regarding an employee 

 

Next, the evaluator may draw a random sample of employees and formally interview them, giving full assurance of 

confidentiality.  The evaluator may code each employees responses as E1, E2, etc. and, using a pre-defined schedule 

of questions, code the responses to each question as + or - to indicate statements made that verify or negate the 

presence of harassment.  Again, the coding for the questions and their responses might be: 

 

 E1(1) +; E1(2) -; E1(3)-; E1(4)+ 

 E2(1)-; E2(2)+; E2(3)+; E2(4)- 

 etc. 

 

 The evaluator may specifically interview the females in the work-setting (recognizing that sexual 

harassment can be evidenced by either gender, but more likely reported by females).  This type of interview is again, 

very sensitive.  An individual often must show great courage to even raise the complaint of harassment and may fear 

reprisal from coworkers or employer.  The evaluator must be particularly well versed in the separation of 

perceptions of harassment from evidence of harassment.  Again, coding of responses to questions or volunteered 

information may be useful for assuring confidentiality and brevity in data collection.  Something like the previous 

coding might be used: 

 

 C1(1)V+; C1(2)P-;  etc. where C1 is the first complainant, V is evidence, P is a perception and + or - is 

content within the definition of harassment or not in the definition of harassment. 

 

 Once such data is collected and summarized, the evaluator must still attach weight to each type of evidence 

or perception.  Typically, “hard” evidence such as graffiti, derogatory written comments, verified derogatory 

conversations, etc. are given a higher value than perceptions or hearsay evidence.  Notice that the evaluator is not in 

the role of changing the work environment, filing complaints with the Equal Opportunity Commission or other 

corrective decisions and actions.  The evaluator in this example was likely asked to determine if harassment exists or 
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perhaps the “degree” of harassment that may exist.  The report completed may, of course, suggest alternative actions 

appropriate to the evidence found and conclusions reached by the evaluator.  It is the responsibility of the evaluators 

employer to act on the evaluation results, not the evaluator. 

Classical Test Item Analysis 

 

Classical item analysis is used to estimate the reliability of test scores obtained from measures of subjects on some 

attribute such as achievement, aptitude or intelligence.  In classical test theory, the obtained score for an individual 

on items is theorized to consist of a “true score” component and an “error score” component.  Errors are typically 

assumed to be normally distributed with a mean of zero over all the subjects measured. 

 

 Several methods are available to estimate the reliability of the measures and vary according to the assumptions made 

about the scores.  The Kuder-Richardson estimates are based on the product-moment correlation (or covariance) 

among items of the observed test scores and those of a theoretical “parallel” test form.  The Cronbach and Hoyt 

estimates utilize a treatment by subjects analysis of variance design which yields identical results to the KR#20 

method when item scores are dichotomous (0 and 1) values. 

 

When you select the Classical Item Analysis procedure you will use the following dialogue box to specify how your 

test is to be analyzed.  If the test consists of multiple sub-tests, you may define a scale for each sub-test by 

specifying those items belonging to each sub-test.  The procedure will need to know how to determine the correct 

and incorrect responses.  If your data are already 0 and 1 scores, the most simple method is to simply include, as the 

first record in your file, a case with 1’s for each item.  If your data consists of values ranging, say, between 1 and 5 

corresponding to alternative choices, you will either include a first case with the correct choice values or indicate 

you wish to Prompt for Correct Responses (as numbers when values are numbers.)  If items are to be assigned 

different weights, you can assign those weights by selecting the “Assign Item Weights scoring option. The scored 

item matrix will be printed if you elect it on the output options.  Three different reliability methods are available.  

You can select them all if you like. 

 

 

 

Fig. 11.1   Classical Item Analysis Dialog 

Shown below is a sample output obtained from the Classical Item Analysis procedure followed by an item 

characteristic curve plot for one of the items.  The file used was “itemdat.LAZ”. 

 
TEST SCORING REPORT 

 

PERSON ID NUMBER FIRST NAME LAST NAME TEST SCORE 

               1       Bill     Miller   5.00 

               2       Barb     Benton   4.00 

               3        Tom   Richards   3.00 

               4      Keith     Thomas   2.00 
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               5        Bob       King   1.00 

               6        Rob   Moreland   0.00 

               7      Sandy     Landis   1.00 

               8     Vernil      Moore   2.00 

               9       Dick      Tyler   3.00 

              10      Harry       Cook   4.00 

              11     Claude      Rains   5.00 

              12      Clark       Kent   3.00 

              13       Bill    Clinton   3.00 

              14     George       Bush   4.00 

              15        Tom  Jefferson   4.00 

              16        Abe    Lincoln   2.00 

Alpha Reliability Estimate for Test = 0.6004  S.E. of Measurement =    0.920 

Analysis of Variance for Hoyt Reliabilities 

 

SOURCE    D.F.          SS        MS        F        PROB 

Subjects   15           6.35      0.42      2.50      0.01 

Within     64          13.20      0.21 

Items       4           3.05      0.76      4.51      0.00 

Error      60          10.15      0.17 

Total      79          19.55 

 

Hoyt Unadjusted Test Rel. for scale TOTAL  = 0.5128  S.E. of Measurement =    0.000 

Hoyt Adjusted Test Rel. for scale TOTAL    = 0.6004  S.E. of Measurement =    0.000 

Hoyt Unadjusted Item Rel. for scale TOTAL  = 0.1739  S.E. of Measurement =    0.000 

Hoyt Adjusted Item Rel. for scale TOTAL    = 0.2311  S.E. of Measurement =    0.000 

Item and Total Score Intercorrelations with   16 cases. 

 

 

Variables 

                  VAR1         VAR2         VAR3         VAR4         VAR5  

     VAR1        1.000        0.153        0.048       -0.048        0.255  

     VAR2        0.153        1.000        0.493        0.323        0.164  

     VAR3        0.048        0.493        1.000        0.270        0.323  

     VAR4       -0.048        0.323        0.270        1.000        0.221  

     VAR5        0.255        0.164        0.323        0.221        1.000  

     TOTAL       0.369        0.706        0.727        0.615        0.634  

 

 

Variables 

                  TOTAL 

     VAR1        0.369  

     VAR2        0.706  

     VAR3        0.727  

     VAR4        0.615  

     VAR5        0.634  

     TOTAL       1.000  

 

 

 

 

Means with   16 valid cases. 

 

Variables        VAR1         VAR2         VAR3         VAR4         VAR5  

                 0.875        0.688        0.563        0.438        0.313  

 

Variables        TOTAL 

                 2.875  

 

 

Variances with   16 valid cases. 

 

Variables        VAR1         VAR2         VAR3         VAR4         VAR5  

                 0.117        0.229        0.263        0.263        0.229  

 

Variables        TOTAL 

                 2.117  

 

 

Standard Deviations with   16 valid cases. 

 

Variables        VAR1         VAR2         VAR3         VAR4         VAR5  

                 0.342        0.479        0.512        0.512        0.479  
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Variables        TOTAL 

                 1.455  

KR#20 = 0.6591 for the test with mean =  1.250 and variance =  0.733 

Item  Mean    Variance   Pt.Bis.r 

  2    0.688   0.229     0.8538 

  3    0.563   0.263     0.8737 

KR#20 = 0.6270 for the test with mean =  1.688 and variance =  1.296 

Item  Mean    Variance   Pt.Bis.r 

  2    0.688   0.229     0.7875 

  3    0.563   0.263     0.7787 

  4    0.438   0.263     0.7073 

KR#20 = 0.6310 for the test with mean =  2.000 and variance =  1.867 

Item  Mean    Variance   Pt.Bis.r 

  2    0.688   0.229     0.7135 

  3    0.563   0.263     0.7619 

  4    0.438   0.263     0.6667 

  5    0.313   0.229     0.6116 

KR#20 = 0.6004 for the test with mean =  2.875 and variance =  2.117 

Item  Mean    Variance   Pt.Bis.r 

  2    0.688   0.229     0.7059 

  3    0.563   0.263     0.7267 

  4    0.438   0.263     0.6149 

  5    0.313   0.229     0.6342 

  1    0.875   0.117     0.3689 

Item and Total Score Intercorrelations with   16 cases. 

 

 

Variables 

                  VAR1         VAR2         VAR3         VAR4         VAR5  

     VAR1        1.000        0.153        0.048       -0.048        0.255  

     VAR2        0.153        1.000        0.493        0.323        0.164  

     VAR3        0.048        0.493        1.000        0.270        0.323  

     VAR4       -0.048        0.323        0.270        1.000        0.221  

     VAR5        0.255        0.164        0.323        0.221        1.000  

     TOTAL       0.369        0.706        0.727        0.615        0.634  

 

 

Variables 

                  TOTAL 

     VAR1        0.369  

     VAR2        0.706  

     VAR3        0.727  

     VAR4        0.615  

     VAR5        0.634  

     TOTAL       1.000  

 

 

 

 

Means with   16 valid cases. 

 

Variables        VAR1         VAR2         VAR3         VAR4         VAR5  

                 0.875        0.688        0.563        0.438        0.313  

 

Variables        TOTAL 

                 2.875  

 

 

Variances with   16 valid cases. 

 

Variables        VAR1         VAR2         VAR3         VAR4         VAR5  

                 0.117        0.229        0.263        0.263        0.229  

 

Variables        TOTAL 

                 2.117  

 

 

Standard Deviations with   16 valid cases. 

 

Variables        VAR1         VAR2         VAR3         VAR4         VAR5  

                 0.342        0.479        0.512        0.512        0.479  

 

Variables        TOTAL 

                 1.455  
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Determinant of correlation matrix =   0.5209 

 

Multiple Correlation Coefficients for Each Variable 

 

  Variable       R        R2         F     Prob.>F  DF1  DF2 

     VAR1      0.327     0.107     0.330     0.852    4   11 

     VAR2      0.553     0.306     1.212     0.360    4   11 

     VAR3      0.561     0.315     1.262     0.342    4   11 

     VAR4      0.398     0.158     0.516     0.726    4   11 

     VAR5      0.436     0.190     0.646     0.641    4   11 

 

Betas in Columns with   16 cases. 

 

 

Variables 

                  VAR1         VAR2         VAR3         VAR4         VAR5  

     VAR1       -1.000        0.161       -0.082       -0.141        0.262  

     VAR2        0.207       -1.000        0.442        0.274       -0.083  

     VAR3       -0.107        0.447       -1.000        0.082        0.303  

     VAR4       -0.149        0.226        0.067       -1.000        0.178  

     VAR5        0.289       -0.071        0.257        0.185       -1.000  

 

 

Standard Errors of Prediction 

Variable     Std.Error 

     VAR1      0.377 

     VAR2      0.466 

     VAR3      0.495 

     VAR4      0.549 

     VAR5      0.503 

 

Raw Regression Coefficients with   16 cases. 

 

Variables 

                  VAR1         VAR2         VAR3         VAR4         VAR5  

     VAR1       -1.000        0.225       -0.123       -0.211        0.367  

     VAR2        0.147       -1.000        0.473        0.293       -0.083  

     VAR3       -0.071        0.418       -1.000        0.082        0.283  

     VAR4       -0.099        0.211        0.067       -1.000        0.167  

     VAR5        0.206       -0.071        0.275        0.199       -1.000  

 

 

Variable   Constant 

     VAR1      0.793 

     VAR2      0.186 

     VAR3      0.230 

     VAR4      0.313 

     VAR5     -0.183 

 

 

Fig. 11.2   Distribution of Test Scores (Classical Analysis) 
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Fig. 11.3  Item Means 

Analysis of Variance: Treatment by Subject and Hoyt Reliability 

 

 The Within Subjects Analysis of Variance involves the repeated measurement of the same unit of observation.  

These repeated observations are arranged as variables (columns) in the Main Form grid for the cases (grid rows.)  If 

only two measures are administered, you will probably use the matched pairs (dependent) t-test method.  When 

more than two measures are administered, you may use the repeated measures ANOVA method to test the equality 

of treatment level means in the population sampled.  Since within subjects analysis is a part of the Hoyt Intraclass 

reliability estimation procedure, you may use this procedure to complete the analysis (see the Measurement 

procedures under the Analyses menu on the Main Form.) 

 

 

Fig. 11.4  Hoyt Reliability by ANOVA 

 
The output from an example analysis is shown below: 

 

Treatments by Subjects (AxS) ANOVA Results. 

 

Data File = C:\lazarus\Projects\LazStats\LazStatsData\ABRDATA.LAZ 

 

 

----------------------------------------------------------- 

SOURCE           DF        SS        MS        F  Prob. > F 

----------------------------------------------------------- 

SUBJECTS         11   181.000    16.455 

WITHIN SUBJECTS  36  1077.000    29.917 

   TREATMENTS     3   991.500   330.500   127.561     0.000 

   RESIDUAL      33    85.500     2.591 

----------------------------------------------------------- 

TOTAL            47  1258.000    26.766 

----------------------------------------------------------- 
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TREATMENT (COLUMN) MEANS AND STANDARD DEVIATIONS 

VARIABLE  MEAN      STD.DEV. 

C1          16.500     2.067 

C2          11.500     2.431 

C3           7.750     2.417 

C4           4.250     2.864 

 

Mean of all scores =     10.000 with standard deviation =      5.174 

 

RELIABILITY ESTIMATES 

 

TYPE OF ESTIMATE              VALUE 

Unadjusted total reliability  -0.818 

Unadjusted item reliability    -0.127 

Adjusted total (Cronbach)      0.843 

Adjusted item reliability      0.572 

 

BOX TEST FOR HOMOGENEITY OF VARIANCE-COVARIANCE MATRIX 

 

 

SAMPLE COVARIANCE MATRIX with   12 cases. 

 

 

Variables 

                     C1           C2           C3           C4 

        C1       4.273        2.455        1.227        1.318  

        C2       2.455        5.909        4.773        5.591  

        C3       1.227        4.773        5.841        5.432  

        C4       1.318        5.591        5.432        8.205  

 

 

 

 

ASSUMED POP. COVARIANCE MATRIX with   12 cases. 

 

 

Variables 

                     C1           C2           C3           C4 

        C1       6.057        0.693        0.693        0.693  

        C2       0.114        5.977        0.614        0.614  

        C3       0.114        0.103        5.914        0.551  

        C4       0.114        0.103        0.093        5.863  

 

 

 

Determinant of variance-covariance matrix =       81.6 

Determinant of homogeneity matrix =   1.26E003 

ChiSquare =    108.149 with   8 degrees of freedom 

Probability of larger chisquare = 9.66E-007 

 

 

Fig. 11.5   Within Subjects ANOVA Plot 
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Kuder-Richardson #21 Reliability 

 

 The Kuder-Richardson formula #20 was developed from Classical Test Theory (true-score theory).  A shorter form 

of the estimate can be made using only the mean, standard deviation and number of test items if one can assume that 

the inter-item covariances are equal.  Below is the form which appears when this procedure is selected from the 

Measurement option of the Analyses menu: 

 

 

Fig. 11.6   Kuder-Richardson Formula 21 Reliability 

 

Note that we have entered the maximum score (total number of items), the test mean, and the test standard deviation.  

When you click the Compute button, the estimate is shown in the labeled box. 

Weighted Composite Test Reliablity 

 

The reliability for a combination of tests, each of which has its own estimate of reliability and a weight assigned to it, 

may be computed.  This composite will typically be greater than any one test by itself due to the likelihood that the 

subtests are correlated positively among themselves.  Since teachers typically assign course grades based on a 

combination of individual tests administered over the time period of a course, this reliability estimate in built into 

the Grading System.  See the description and examples in that section.  A file labeled “CompRel.LAZ” is used in the 

example below: 

 

 

Fig. 11.7   Composite Test Reliability Dialog 

 
Composite Test Reliability 

 

File Analyzed: C:\lazarus\Projects\LazStats\LazStatsData\CompRel.LAZ 
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Correlations Among Tests with   10 cases. 

 

 

Variables 

                  Test1        Test2        Test3 

     Test1       1.000        0.927        0.952  

     Test2       0.927        1.000        0.855  

     Test3       0.952        0.855        1.000  

 

 

 

 

Means with   10 valid cases. 

 

Variables        Test1        Test2        Test3 

                 5.500        5.500        7.500  

 

 

Variances with   10 valid cases. 

 

Variables        Test1        Test2        Test3 

                 9.167        9.167        9.167  

 

 

Standard Deviations with   10 valid cases. 

 

Variables        Test1        Test2        Test3 

                 3.028        3.028        3.028  

 

 

 

Test Weights with   10 valid cases. 

 

Variables        Test1        Test2        Test3 

                 1.000        1.000        2.000  

 

 

Test Reliabilities with   10 valid cases. 

 

Variables        Test1        Test2        Test3 

                 0.900        0.700        0.800  

 

Composite reliability =  0.929 

 

Rasch One Parameter Item Analysis 

 

 Item Response Theory (IRT) is another theoretical view of subject responses to items on a test.  IRT suggests that 

items may posess one or more characteristics (parameters) that may be estimated.  In the theory developed by 

George Rasch, one parameter, item difficulty, is estimated (in addition to the estimate of individual subject “ability” 

parameters.)  Utilizing maximum-liklihood methods and log difficulty and log ability parameter estimates, the Rasch 

method attempts to estimate subject and item parameters that are “independent” of one another.  This is unlike 

Classical theory in which the item difficulty (proportion of subects passing an item) is directly a function of the 

ability of the subjects sampled.  IRT is sometimes also considered to be a “Latent Trait Theory” due to the 

assumption that all of the items are measures of the same underlying “trait”.  Several tests of the “fit” of the item 

responses to this assumption are typically included in programs to estimate Rasch parameters.  Other IRT 

procedures posit two or three parameters, the others being the “slope” and the “chance” parameters.  The slope is the 

rate at which the probability of getting an item correct increases with equal units of increase in subject ability.  The 

chance parameter is the probability of obtaining the item correct by chance alone.  In the Rasch model, the chance 

probability is assumed to be zero and the slope parameter assumed to be equal for all items.  The file labeled 

“itemdat.LAZ” is used for our example. 
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Fig. 11.8   Rasch Item Analysis Dialog 

 

Shown below is a sample of output from a test analyzed by the Rasch model.  The model cannot make ability 

estimates for subjects that miss all items or get all items correct so they are screened out.  Parameters estimated are 

given in log units.  Also shown is one of the item information function curve plots.  Each item provides the 

maximum discrimination (information) at that point where the log ability of the subject is approximately the same as 

the log difficulty of the item.  In examining the output you will note that item 1 does not appear to fit the 

assumptions of the Rasch model as measured by the chi-square statistic. 

 

 

Fig. 11.9   Rasch Item Log Difficulty Estimate Plot 
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Fig. 11.10   Rasch Log Score Estimates 

 

 

Fig. 11.11   A Rasch Item Characteristic Curve 

 

 

Fig. 11.12   A Rasch Test Information Curve 

 
Rasch One-Parameter Logistic Test Scaling (Item Response Theory) 

Written by William G. Miller 

 

case   1 eliminated.  Total score was   5 
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Case   2 Total Score :=   4 Item scores 1 1 1 1 0 

Case   3 Total Score :=   3 Item scores 1 1 1 0 0 

Case   4 Total Score :=   2 Item scores 1 1 0 0 0 

Case   5 Total Score :=   1 Item scores 1 0 0 0 0 

case   6 eliminated.  Total score was   0 

Case   7 Total Score :=   1 Item scores 1 0 0 0 0 

Case   8 Total Score :=   2 Item scores 1 1 0 0 0 

Case   9 Total Score :=   3 Item scores 1 1 1 0 0 

Case  10 Total Score :=   4 Item scores 1 1 1 1 0 

case  11 eliminated.  Total score was   5 

Case  12 Total Score :=   3 Item scores 1 0 1 0 1 

Case  13 Total Score :=   3 Item scores 0 1 1 1 0 

Case  14 Total Score :=   4 Item scores 1 1 1 0 1 

Case  15 Total Score :=   4 Item scores 1 1 0 1 1 

Case  16 Total Score :=   2 Item scores 1 0 0 1 0 

 

 

Total number of score groups :=    4 

 

Matrix of Item Failures in Score Groups 

   Score Group   1   2   3   4     Total 

ITEM 

 

   1             0   0   1   0      1 

   2             2   1   1   0      4 

   3             2   3   0   1      6 

   4             2   2   3   1      8 

   5             2   3   3   2     10 

Total            2   3   4   4     13 

 

Item Log Odds Deviation Squared Deviation 

  1   -2.48    -2.13       4.54 

  2   -0.81    -0.46       0.21 

  3   -0.15     0.20       0.04 

  4    0.47     0.83       0.68 

  5    1.20     1.56       2.43 

Score Frequency Log Odds Freq.x Log  Freq.x Log Odds Squared 

  1     2       -1.39       -2.77       3.84 

  2     3       -0.41       -1.22       0.49 

  3     4        0.41        1.62       0.66 

  4     4        1.39        5.55       7.69 

 

Prox values and Standard Errors 

  

Item     Scale Value     Standard Error 

  1     -2.730            1.334 

  2     -0.584            0.770 

  3      0.258            0.713 

  4      1.058            0.731 

  5      1.999            0.844 

Y expansion factor :=   1.2821 

 

Score    Scale Value     Standard Error 

  1     -1.910           1.540 

  2     -0.559           1.258 

  3      0.559           1.258 

  4      1.910           1.540 

X expansion factor =   1.3778 

Maximum Likelihood Iteration Number  0 

Maximum Likelihood Iteration Number  1 

Maximum Likelihood Iteration Number  2 

Maximum Likelihood Iteration Number  3 

 

Maximum Likelihood Estimates 

 

Item  Log Difficulty 

  1      -2.74 

  2      -0.64 

  3       0.21 

  4       1.04 

  5       1.98 

 

Score   Log Ability 

  1     -2.04 
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  2     -0.54 

  3      0.60 

  4      1.92 

 

Goodness of Fit Test for Each Item 

Item  Chi-Squared  Degrees of  Probability 

No.   Value        Freedom     of Larger Value 

  1      29.78       9          0.0005 

  2       8.06       9          0.5283 

  3      10.42       9          0.3177 

  4      12.48       9          0.1875 

  5       9.00       9          0.4371 

 

 

Item Data Summary 

ITEM  PT.BIS.R.  BIS.R.  SLOPE   PASSED  FAILED  RASCH DIFF 

  1   -0.064  -0.117    -0.12   12.00     1      -2.739 

  2    0.648   0.850     1.61    9.00     4      -0.644 

  3    0.679   0.852     1.63    7.00     6       0.207 

  4    0.475   0.605     0.76    5.00     8       1.038 

  5    0.469   0.649     0.85    3.00    10       1.981 

 

Guttman Scalogram Analysis 

 

 Guttman scales are those measurement instruments composed of items which, ideally, form a hierarchy in which the 

total score of a subject can indicate the actual response (correct or incorrect) of each item.  Items are arranged in 

order of the proportion of subjects passing the item and subjects are grouped and sequenced by their total scores.  If 

the items measure consistently, a triangular pattern should emerge.  A coefficient of “reproducibility” is obtained 

which may be interpreted in a manner similar to test reliability. 

 

Dichotomously scored (0 and 1) items representing the responses of subjects in your data grid rows are the variables 

(grid columns) analyzed.  Select the items to analyze in the same manner as you would for the Classical Item 

Analysis or the Rasch analysis.  When you click the OK button, you will immediately be presented with the results 

on the output form.  An example is shown below. 

 

 

Fig. 11.13   Guttman Scalogram Analysis Dialog                   
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GUTTMAN SCALOGRAM ANALYSIS 

                        Cornell Method 

No. of Cases :=  12.  No. of items :=   6 

RESPONSE MATRIX 

Subject Row                    Item Number 

Label Sum     VAR1      VAR2      VAR3      VAR4      VAR5       VAR6 

              0    1    0    1    0    1    0    1    0    1    0    1  

   1    6     0    1    0    1    0    1    0    1    0    1    0    1                                                                      

   2    6     0    1    0    1    0    1    0    1    0    1    0    1  

   3    6     0    1    0    1    0    1    0    1    0    1    0    1  

   4    6     0    1    0    1    0    1    0    1    0    1    0    1  

   5    6     0    1    0    1    0    1    0    1    0    1    0    1  

   6    6     0    1    0    1    0    1    0    1    0    1    0    1  

   7    6     0    1    0    1    0    1    0    1    0    1    0    1  

   8    6     0    1    0    1    0    1    0    1    0    1    0    1  

   9    6     0    1    0    1    0    1    0    1    0    1    0    1  

  10    6     0    1    0    1    0    1    0    1    0    1    0    1  

  11    6     0    1    0    1    0    1    0    1    0    1    0    1  

  12    6     0    1    0    1    0    1    0    1    0    1    0    1  

              -cut-     -cut-     -cut-     -cut-     -cut-     -cut-   

TOTALS        0   12    0   12    0   12    0   12    0   12    0   12  

ERRORS        0    0    0    0    0    0    0    0    0    0    0    0  

Coefficient of Reproducibility :=  1.000 
 

GUTTMAN SCALOGRAM ANALYSIS   

Goodenough Modification Using Modal Responses 

       MODAL ITEM RESPONSES 

TOTAL                 ITEMS 

 

VAR1      VAR2      VAR3      VAR4      VAR5       VAR6 

   6       1         1         1         1         1         1    

   5       1         1         1         1         1         1    

   4       1         1         1         1         1         1    

   3       1         1         1         1         1         1    

   2       1         1         1         1         1         1    

   1       1         1         1         1         1         1    

   0       1         1         1         1         1         1    

 

No. of Cases :=  12.  No. of items :=   6 

RESPONSE MATRIX 

Subject Row Error                    Item Number 

Label  Sum Count     VAR1      VAR2      VAR3      VAR4      VAR5       VAR6 

                    0    1    0    1    0    1    0    1    0    1    0    1  

   1    6    0      0    1    0    1    0    1    0    1    0    1    0    1  

   2    6    0      0    1    0    1    0    1    0    1    0    1    0    1  

   3    6    0      0    1    0    1    0    1    0    1    0    1    0    1  

   4    6    0      0    1    0    1    0    1    0    1    0    1    0    1  

   5    6    0      0    1    0    1    0    1    0    1    0    1    0    1  

   6    6    0      0    1    0    1    0    1    0    1    0    1    0    1  

   7    6    0      0    1    0    1    0    1    0    1    0    1    0    1  

   8    6    0      0    1    0    1    0    1    0    1    0    1    0    1  

   9    6    0      0    1    0    1    0    1    0    1    0    1    0    1  

  10    6    0      0    1    0    1    0    1    0    1    0    1    0    1  

  11    6    0      0    1    0    1    0    1    0    1    0    1    0    1  

  12    6    0      0    1    0    1    0    1    0    1    0    1    0    1  

TOTALS              0   12    0   12    0   12    0   12    0   12    0   12  

PROPORTIONS      0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00  

Coefficient of Reproducibility :=  1.000 
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Minimal Marginal Reproducibility :=  1.000 

Successive Interval Scaling 

 

 Successive Interval Scaling was developed as an approximation of Thurstone’s Paired Comparisons method for 

estimation of scale values and dispersion of scale values for items designed to measure attitudes.  Typically, five to 

nine categories are used by judges to indicate the degree to which an item expresses an attitude (if a subject agrees 

with the item) between very negative to very positive.  Once scale values are estimated, the items responded to by 

subjects are scored by obtaining the median scale value of those items to which the subject agrees. 

 

To obtain Successive interval scale values, select that option under the Measurement group in the Analyses menu on 

the main form.  The specifications form below will appear.  Select those items (variables) you wish to scale.  The 

data analyzed consists of rows representing judges and columns representing the scale value chosen for an item by a 

judge.  The file labeled “sucsintv.LAZ” is used as an example file. 

 

 

Fig. 11.14  Successive Scaling Dialog 

 

 

 When you click the OK button on the box above, the results will appear on the printout form.  An example of results 

are presented below. 

 
          SUCCESSIVE INTERVAL SCALING RESULTS 

 

              0- 1   1- 2   2- 3   3- 4   4- 5   5- 6   6- 7  

     VAR1  

Frequency        0      0      0      0      4      4      4 

Proportion   0.000  0.000  0.000  0.000  0.333  0.333  0.333 

Cum. Prop.   0.000  0.000  0.000  0.000  0.333  0.667  1.000 

Normal z      -      -      -      -    -0.431  0.431   -    

     VAR2  

Frequency        0      0      1      3      4      4      0 

Proportion   0.000  0.000  0.083  0.250  0.333  0.333  0.000 

 

Cum. Prop.   0.000  0.000  0.083  0.333  0.667  1.000  1.000 

Normal z      -      -    -1.383 -0.431  0.431   -      -    

     VAR3  

Frequency        0      0      4      3      4      1      0 

Proportion   0.000  0.000  0.333  0.250  0.333  0.083  0.000 

Cum. Prop.   0.000  0.000  0.333  0.583  0.917  1.000  1.000 

Normal z      -      -    -0.431  0.210  1.383   -      -    

     VAR4  

Frequency        0      3      4      5      0      0      0 
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Proportion   0.000  0.250  0.333  0.417  0.000  0.000  0.000 

 

Cum. Prop.   0.000  0.250  0.583  1.000  1.000  1.000  1.000 

Normal z      -    -0.674  0.210   -      -      -      -    

     VAR5  

Frequency        5      4      3      0      0      0      0 

Proportion   0.417  0.333  0.250  0.000  0.000  0.000  0.000 

Cum. Prop.   0.417  0.750  1.000  1.000  1.000  1.000  1.000 

Normal z    -0.210  0.674   -      -      -      -      -    

      VAR6 

Frequency        1      2      2      2      2      2      1 

Proportion   0.083  0.167  0.167  0.167  0.167  0.167  0.083 

 

Cum. Prop.   0.083  0.250  0.417  0.583  0.750  0.917  1.000 

Normal z    -1.383 -0.674 -0.210  0.210  0.674  1.383   -    

 

                  INTERVAL WIDTHS 

            2- 1   3- 2   4- 3   5- 4   6- 5  

     VAR1    -      -      -      -     0.861 

     VAR2    -      -     0.952  0.861   -    

     VAR3    -      -     0.641  1.173   -    

     VAR4    -     0.885   -      -      -    

     VAR5   0.885   -      -      -      -    

      VAR6  0.709  0.464  0.421  0.464  0.709 

 

Mean Width   0.80   0.67   0.67   0.83   0.78 

No. Items       2      2      3      3      2 

Std. Dev.s   0.02   0.09   0.07   0.13   0.01 

Cum. Means   0.80   1.47   2.14   2.98   3.76 

 

ESTIMATES OF SCALE VALUES AND THEIR DISPERSIONS 

Item       No. Ratings Scale Value  Discriminal Dispersion 

     VAR1       12         3.368       1.224 

     VAR2       12         2.559       0.822 

     VAR3       12         1.919       0.811 

     VAR4       12         1.303       1.192 

 

     VAR5       12         0.199       1.192 

      VAR6      12         1.807       0.759 

 

Z scores Estimated from Scale values 

             0- 1   1- 2   2- 3   3- 4   4- 5   5- 6   6- 7  

     VAR1  -3.368 -2.571 -1.897 -1.225 -0.392  0.392 

     VAR2  -2.559 -1.762 -1.088 -0.416  0.416  1.201 

     VAR3  -1.919 -1.122 -0.448  0.224  1.057  1.841 

     VAR4  -1.303 -0.506  0.169  0.840  1.673  2.458 

     VAR5  -0.199  0.598  1.272  1.943  2.776  3.000 

      VAR6 -1.807 -1.010 -0.336  0.336  1.168  1.953 

 

Cumulative Theoretical Proportions 

             0- 1   1- 2   2- 3   3- 4   4- 5   5- 6   6- 7  

     VAR1   0.000  0.005  0.029  0.110  0.347  0.653  1.000 

     VAR2   0.005  0.039  0.138  0.339  0.661  0.885  1.000 

     VAR3   0.028  0.131  0.327  0.589  0.855  0.967  1.000 

     VAR4   0.096  0.306  0.567  0.800  0.953  0.993  1.000 

     VAR5   0.421  0.725  0.898  0.974  0.997  0.999  1.000 

      VAR6  0.035  0.156  0.369  0.631  0.879  0.975  1.000 

 

Average Discrepency Between Theoretical and Observed Cumulative Proportions =  0.050 

 

Maximum discrepency =  0.200 found in item VAR4 
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Differential Item Functioning 

 

 Anyone developing tests today should be sensitive to the fact that some test items may present a bias for one or more 

subgroups in the population to which the test is administered.  For example, because of societal value systems, boys 

and girls may be exposed to quite different learning experiences during their youth.  A word test in mathematics 

may unintentionally give an advantage to one gender group over another simply by the examples used in the item.  

To identify possible bias in an item, one can examine the differential item functioning of each item for the sub-

groups to which the test is administered.  The Mantel-Haenszel test statistic may be applied to test the difference on 

the item characteristic curve for the difference between a "focus" group and a "reference" group.  We will 

demonstrate using a data set in which 40 items have been administered to 1000 subjects in one group and 1000 

subjects in another group.  The groups are simply coded 1 and 2 for the reference and focus groups.  Since there may 

be very few (or no) subjects that get a specific total score, we will group the total scores obtained by subjects into 

groups of 4 so that we are comparing subjects in the groups that have obtained total item scores of 0 to 3, 4 to 7, …, 

40 to 43.  As you will see, even this grouping is too small for several score groups and we should probably change 

the score range for the lowest and highest scores to a larger range of scores in another run. 

 

When you elect to do this analysis, the specification form below appears: 

 

 

Fig. 11.15  Differential Item Functioning Dialog 

 

On the above form you specify the items to be analyzed and also the variable defining the reference and focus group 

codes.  You may then specify the options desired by clicking the corresponding buttons for the desired options.  You 

also enter the number of score groups to be used in grouping the subject's total scores.  When this is specified, you 

then enter the lowest and highest score for each of those score groups.  When you have specified the low and hi 

score for the first group, click the right arrow on the "slider" bar to move to the next group.  You will see that the 

lowest score has automatically been set to one higher than the previous group's highest score to save you time in 

entering data.  You do not, of course, have to use the same size for the range of each score group.  Using too large a 

range of scores may cut down the sensitivity of the test to differences between the groups.  Fairly large samples of 

subjects is necessary for a reasonable analysis.  Once you have completed the specifications, click the Compute 

button and you will see the following results are obtained (we elected to print the descriptive statistics, correlations 

and item plots): 

 
Mantel-Haenszel DIF Analysis adapted by Bill Miller from 

EZDIF written by Niels G. Waller 

 

 

Total Means with 2000 valid cases. 

 

Variables        VAR 1        VAR 2        VAR 3        VAR 4        VAR 5 
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                 0.688        0.064        0.585        0.297        0.451  

 

Variables        VAR 6        VAR 7        VAR 8        VAR 9       VAR 10 

                 0.806        0.217        0.827        0.960        0.568  

 

Variables       VAR 11       VAR 12       VAR 13       VAR 14       VAR 15 

                 0.350        0.291        0.725        0.069        0.524  

 

Variables       VAR 16       VAR 17       VAR 18       VAR 19       VAR 20 

                 0.350        0.943        0.545        0.017        0.985  

 

Variables       VAR 21       VAR 22       VAR 23       VAR 24       VAR 25 

                 0.778        0.820        0.315        0.203        0.982  

 

Variables       VAR 26       VAR 27       VAR 28       VAR 29       VAR 30 

                 0.834        0.700        0.397        0.305        0.223  

 

Variables       VAR 31       VAR 32       VAR 33       VAR 34       VAR 35 

                 0.526        0.585        0.431        0.846        0.115  

 

Variables       VAR 36       VAR 37       VAR 38       VAR 39       VAR 40 

                 0.150        0.817        0.909        0.793        0.329  

 

 

Total Variances with 2000 valid cases. 

 

Variables        VAR 1        VAR 2        VAR 3        VAR 4        VAR 5 

                 0.215        0.059        0.243        0.209        0.248  

 

Variables        VAR 6        VAR 7        VAR 8        VAR 9       VAR 10 

                 0.156        0.170        0.143        0.038        0.245  

 

Variables       VAR 11       VAR 12       VAR 13       VAR 14       VAR 15 

                 0.228        0.206        0.199        0.064        0.250  

 

Variables       VAR 16       VAR 17       VAR 18       VAR 19       VAR 20 

                 0.228        0.054        0.248        0.017        0.015  

 

Variables       VAR 21       VAR 22       VAR 23       VAR 24       VAR 25 

                 0.173        0.148        0.216        0.162        0.018  

 

Variables       VAR 26       VAR 27       VAR 28       VAR 29       VAR 30 

                 0.139        0.210        0.239        0.212        0.173  

 

Variables       VAR 31       VAR 32       VAR 33       VAR 34       VAR 35 

                 0.249        0.243        0.245        0.130        0.102  

 

Variables       VAR 36       VAR 37       VAR 38       VAR 39       VAR 40 

                 0.128        0.150        0.083        0.164        0.221  

 

 

Total Standard Deviations with 2000 valid cases. 

 

Variables        VAR 1        VAR 2        VAR 3        VAR 4        VAR 5 

                 0.463        0.244        0.493        0.457        0.498  

 

Variables        VAR 6        VAR 7        VAR 8        VAR 9       VAR 10 

                 0.395        0.412        0.379        0.196        0.495  

 

Variables       VAR 11       VAR 12       VAR 13       VAR 14       VAR 15 

                 0.477        0.454        0.447        0.253        0.500  

 

Variables       VAR 16       VAR 17       VAR 18       VAR 19       VAR 20 

                 0.477        0.233        0.498        0.129        0.124  

 

Variables       VAR 21       VAR 22       VAR 23       VAR 24       VAR 25 

                 0.416        0.384        0.465        0.403        0.135  

 

Variables       VAR 26       VAR 27       VAR 28       VAR 29       VAR 30 

                 0.372        0.459        0.489        0.461        0.416  

 

Variables       VAR 31       VAR 32       VAR 33       VAR 34       VAR 35 

                 0.499        0.493        0.495        0.361        0.319  
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Variables       VAR 36       VAR 37       VAR 38       VAR 39       VAR 40 

                 0.357        0.387        0.288        0.405        0.470  

 

Total Score: Mean =     21.318, Variance =     66.227, Std.Dev. =      8.138 

 

Reference group size = 1000, Focus group size = 1000 

Alpha Reliability Estimate for Test = 0.9228  S.E. of Measurement =    2.261 

Conditioning Levels 

Lower        Upper 

    0            3 

    4            7 

    8           11 

   12           15 

   16           19 

   20           23 

   24           27 

   28           31 

   32           35 

   36           40 

 

 

 

Fig. 11.16  Differential Item Functioning Curve 

 

Etc. 

 

 

Fig. 11.17  Another Item Differential Functioning Curve 

etc. for all items.  Note the difference for the two item plots shown above!  Next, the output reflects multiple passes to 

"fit" the data for the M-H test: 
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COMPUTING M-H CHI-SQUARE, PASS # 1 

 

Cases in Reference Group 

 

 

                        Score Level Counts by Item 

Variables 

                 VAR 1        VAR 2        VAR 3        VAR 4        VAR 5 

     0-  3           8            8            8            8            8  

     4-  7          38           38           38           38           38  

     8- 11          65           65           65           65           65  

    12- 15         108          108          108          108          108  

    16- 19         153          153          153          153          153  

    20- 23         175          175          175          175          175  

    24- 27         154          154          154          154          154  

    28- 31         167          167          167          167          167  

    32- 35          94           94           94           94           94  

    36- 40          38           38           38           38           38  

 

 

                        Score Level Counts by Item 

Variables 

                 VAR 6        VAR 7        VAR 8        VAR 9       VAR 10 

     0-  3           8            8            8            8            8  

     4-  7          38           38           38           38           38  

     8- 11          65           65           65           65           65  

    12- 15         108          108          108          108          108  

    16- 19         153          153          153          153          153  

    20- 23         175          175          175          175          175  

    24- 27         154          154          154          154          154  

    28- 31         167          167          167          167          167  

    32- 35          94           94           94           94           94  

    36- 40          38           38           38           38           38  

 

 

                        Score Level Counts by Item 

Variables 

                VAR 11       VAR 12       VAR 13       VAR 14       VAR 15 

     0-  3           8            8            8            8            8  

     4-  7          38           38           38           38           38  

     8- 11          65           65           65           65           65  

    12- 15         108          108          108          108          108  

    16- 19         153          153          153          153          153  

    20- 23         175          175          175          175          175  

    24- 27         154          154          154          154          154  

    28- 31         167          167          167          167          167  

    32- 35          94           94           94           94           94  

    36- 40          38           38           38           38           38  

 

 

                        Score Level Counts by Item 

Variables 

                VAR 16       VAR 17       VAR 18       VAR 19       VAR 20 

     0-  3           8            8            8            8            8  

     4-  7          38           38           38           38           38  

     8- 11          65           65           65           65           65  

    12- 15         108          108          108          108          108  

    16- 19         153          153          153          153          153  

    20- 23         175          175          175          175          175  

    24- 27         154          154          154          154          154  

    28- 31         167          167          167          167          167  

    32- 35          94           94           94           94           94  

    36- 40          38           38           38           38           38  

 

 

                        Score Level Counts by Item 

Variables 

                VAR 21       VAR 22       VAR 23       VAR 24       VAR 25 

     0-  3           8            8            8            8            8  

     4-  7          38           38           38           38           38  

     8- 11          65           65           65           65           65  

    12- 15         108          108          108          108          108  

    16- 19         153          153          153          153          153  

    20- 23         175          175          175          175          175  
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    24- 27         154          154          154          154          154  

    28- 31         167          167          167          167          167  

    32- 35          94           94           94           94           94  

    36- 40          38           38           38           38           38  

 

 

                        Score Level Counts by Item 

Variables 

                VAR 26       VAR 27       VAR 28       VAR 29       VAR 30 

     0-  3           8            8            8            8            8  

     4-  7          38           38           38           38           38  

     8- 11          65           65           65           65           65  

    12- 15         108          108          108          108          108  

    16- 19         153          153          153          153          153  

    20- 23         175          175          175          175          175  

    24- 27         154          154          154          154          154  

    28- 31         167          167          167          167          167  

    32- 35          94           94           94           94           94  

    36- 40          38           38           38           38           38  

 

 

                        Score Level Counts by Item 

Variables 

                VAR 31       VAR 32       VAR 33       VAR 34       VAR 35 

     0-  3           8            8            8            8            8  

     4-  7          38           38           38           38           38  

     8- 11          65           65           65           65           65  

    12- 15         108          108          108          108          108  

    16- 19         153          153          153          153          153  

    20- 23         175          175          175          175          175  

    24- 27         154          154          154          154          154  

    28- 31         167          167          167          167          167  

    32- 35          94           94           94           94           94  

    36- 40          38           38           38           38           38  

 

 

                        Score Level Counts by Item 

Variables 

                VAR 36       VAR 37       VAR 38       VAR 39       VAR 40 

     0-  3           8            8            8            8            8  

     4-  7          38           38           38           38           38  

     8- 11          65           65           65           65           65  

    12- 15         108          108          108          108          108  

    16- 19         153          153          153          153          153  

    20- 23         175          175          175          175          175  

    24- 27         154          154          154          154          154  

    28- 31         167          167          167          167          167  

    32- 35          94           94           94           94           94  

    36- 40          38           38           38           38           38  

 

 

 

 

Cases in Focus Group 

 

 

                        Score Level Counts by Item 

Variables 

                 VAR 1        VAR 2        VAR 3        VAR 4        VAR 5 

     0-  3           7            7            7            7            7  

     4-  7          47           47           47           47           47  

     8- 11          94           94           94           94           94  

    12- 15         139          139          139          139          139  

    16- 19         177          177          177          177          177  

    20- 23         174          174          174          174          174  

    24- 27         141          141          141          141          141  

    28- 31         126          126          126          126          126  

    32- 35          68           68           68           68           68  

    36- 40          27           27           27           27           27  

 

 

                        Score Level Counts by Item 

Variables 

                 VAR 6        VAR 7        VAR 8        VAR 9       VAR 10 
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     0-  3           7            7            7            7            7  

     4-  7          47           47           47           47           47  

     8- 11          94           94           94           94           94  

    12- 15         139          139          139          139          139  

    16- 19         177          177          177          177          177  

    20- 23         174          174          174          174          174  

    24- 27         141          141          141          141          141  

    28- 31         126          126          126          126          126  

    32- 35          68           68           68           68           68  

    36- 40          27           27           27           27           27  

 

 

                        Score Level Counts by Item 

Variables 

                VAR 11       VAR 12       VAR 13       VAR 14       VAR 15 

     0-  3           7            7            7            7            7  

     4-  7          47           47           47           47           47  

     8- 11          94           94           94           94           94  

    12- 15         139          139          139          139          139  

    16- 19         177          177          177          177          177  

    20- 23         174          174          174          174          174  

    24- 27         141          141          141          141          141  

    28- 31         126          126          126          126          126  

    32- 35          68           68           68           68           68  

    36- 40          27           27           27           27           27  

 

 

                        Score Level Counts by Item 

Variables 

                VAR 16       VAR 17       VAR 18       VAR 19       VAR 20 

     0-  3           7            7            7            7            7  

     4-  7          47           47           47           47           47  

     8- 11          94           94           94           94           94  

    12- 15         139          139          139          139          139  

    16- 19         177          177          177          177          177  

    20- 23         174          174          174          174          174  

    24- 27         141          141          141          141          141  

    28- 31         126          126          126          126          126  

    32- 35          68           68           68           68           68  

    36- 40          27           27           27           27           27  

 

 

                        Score Level Counts by Item 

Variables 

                VAR 21       VAR 22       VAR 23       VAR 24       VAR 25 

     0-  3           7            7            7            7            7  

     4-  7          47           47           47           47           47  

     8- 11          94           94           94           94           94  

    12- 15         139          139          139          139          139  

    16- 19         177          177          177          177          177  

    20- 23         174          174          174          174          174  

    24- 27         141          141          141          141          141  

    28- 31         126          126          126          126          126  

    32- 35          68           68           68           68           68  

    36- 40          27           27           27           27           27  

 

 

                        Score Level Counts by Item 

Variables 

                VAR 26       VAR 27       VAR 28       VAR 29       VAR 30 

     0-  3           7            7            7            7            7  

     4-  7          47           47           47           47           47  

     8- 11          94           94           94           94           94  

    12- 15         139          139          139          139          139  

    16- 19         177          177          177          177          177  

    20- 23         174          174          174          174          174  

    24- 27         141          141          141          141          141  

    28- 31         126          126          126          126          126  

    32- 35          68           68           68           68           68  

    36- 40          27           27           27           27           27  

 

 

                        Score Level Counts by Item 

Variables 
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                VAR 31       VAR 32       VAR 33       VAR 34       VAR 35 

     0-  3           7            7            7            7            7  

     4-  7          47           47           47           47           47  

     8- 11          94           94           94           94           94  

    12- 15         139          139          139          139          139  

    16- 19         177          177          177          177          177  

    20- 23         174          174          174          174          174  

    24- 27         141          141          141          141          141  

    28- 31         126          126          126          126          126  

    32- 35          68           68           68           68           68  

    36- 40          27           27           27           27           27  

 

 

                        Score Level Counts by Item 

Variables 

                VAR 36       VAR 37       VAR 38       VAR 39       VAR 40 

     0-  3           7            7            7            7            7  

     4-  7          47           47           47           47           47  

     8- 11          94           94           94           94           94  

    12- 15         139          139          139          139          139  

    16- 19         177          177          177          177          177  

    20- 23         174          174          174          174          174  

    24- 27         141          141          141          141          141  

    28- 31         126          126          126          126          126  

    32- 35          68           68           68           68           68  

    36- 40          27           27           27           27           27  

 

 

 

Insufficient data found in level: 0 - 3 

CODES ITEM     SIG.  ALPHA   CHI2    P-VALUE    MH D-DIF   S.E. MH D-DIF 

C R    1      ***  8.927   276.392   0.000     -5.144        0.338 

C R    2      *** 10.450    68.346   0.000     -5.514        0.775 

C R    3      ***  7.547   280.027   0.000     -4.750        0.305 

C R    4      *** 10.227   298.341   0.000     -5.464        0.350 

C R    5      *** 12.765   393.257   0.000     -5.985        0.339 

B      6      ***  0.571    15.476   0.000      1.316        0.331 

A      7        *  0.714     6.216   0.013      0.791        0.310 

A      8        *  0.705     5.694   0.017      0.822        0.335 

B      9       **  0.493     6.712   0.010      1.664        0.621 

B     10      ***  0.621    17.349   0.000      1.121        0.267 

A     11        *  0.775     4.511   0.034      0.599        0.275 

A     12      ***  0.687     9.833   0.002      0.883        0.277 

B     13      ***  0.647    11.904   0.001      1.024        0.294 

B     14       **  0.568     7.160   0.007      1.331        0.482 

B     15      ***  0.600    19.747   0.000      1.199        0.267 

B     16      ***  0.601    18.326   0.000      1.198        0.278 

A     17           0.830     0.486   0.486      0.438        0.538 

A     18      ***  0.709     8.989   0.003      0.807        0.264 

A     19           0.582     1.856   0.173      1.270        0.834 

A     20           1.991     1.769   0.183     -1.618        1.072 

A     21        *  0.725     5.783   0.016      0.754        0.308 

A     22        *  0.743     4.023   0.045      0.697        0.337 

B     23      ***  0.572    20.804   0.000      1.315        0.286 

A     24        *  0.723     5.362   0.021      0.764        0.321 

A     25           0.555     1.782   0.182      1.385        0.915 

B     26      ***  0.540    16.456   0.000      1.447        0.353 

A     27      ***  0.687     9.240   0.002      0.884        0.287 

A     28       **  0.735     6.822   0.009      0.723        0.271 

A     29      ***  0.681     9.458   0.002      0.904        0.289 

A     30        *  0.756     4.342   0.037      0.658        0.306 

A     31      ***  0.724     8.016   0.005      0.758        0.263 

A     32        *  0.745     6.513   0.011      0.693        0.266 

A     33       **  0.738     6.907   0.009      0.715        0.267 

A     34           0.944     0.089   0.766      0.135        0.360 

A     35           0.769     2.381   0.123      0.618        0.383 

A     36           0.819     1.530   0.216      0.469        0.357 

A     37        *  0.709     5.817   0.016      0.809        0.326 

A     38        *  0.665     4.552   0.033      0.960        0.431 

A     39           0.779     3.305   0.069      0.588        0.312 

B     40      ***  0.644    13.215   0.000      1.034        0.280 

 

No. of items purged in pass 1 = 5 

Item Numbers: 
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1 

2 

3 

4 

5 

CODES ITEM     SIG.  ALPHA   CHI2    P-VALUE    MH D-DIF   S.E. MH D-DIF 

C R    1      ***  9.367   283.535   0.000     -5.257        0.343 

C R    2      ***  8.741    65.854   0.000     -5.095        0.704 

C R    3      ***  7.923   287.705   0.000     -4.864        0.310 

C R    4      *** 10.888   305.319   0.000     -5.611        0.358 

C R    5      *** 13.001   399.009   0.000     -6.028        0.340 

B      6      ***  0.587    13.927   0.000      1.251        0.331 

A      7        *  0.725     5.598   0.018      0.756        0.311 

A      8        *  0.724     4.851   0.028      0.760        0.335 

B      9        *  0.506     6.230   0.013      1.599        0.620 

B     10      ***  0.638    15.345   0.000      1.056        0.267 

A     11           0.798     3.516   0.061      0.529        0.274 

A     12      ***  0.700     8.907   0.003      0.838        0.276 

A     13      ***  0.663    10.414   0.001      0.964        0.294 

B     14        *  0.595     6.413   0.011      1.219        0.466 

B     15      ***  0.616    17.707   0.000      1.139        0.268 

B     16      ***  0.617    16.524   0.000      1.133        0.276 

A     17           0.850     0.355   0.551      0.382        0.537 

A     18       **  0.729     7.642   0.006      0.742        0.263 

A     19           0.595     1.721   0.190      1.222        0.831 

A     20           2.004     1.805   0.179     -1.633        1.073 

A     21        *  0.746     4.790   0.029      0.688        0.307 

A     22           0.773     2.996   0.083      0.606        0.336 

B     23      ***  0.573    20.155   0.000      1.307        0.289 

A     24        *  0.736     4.796   0.029      0.722        0.320 

A     25           0.570     1.595   0.207      1.320        0.914 

B     26      ***  0.554    14.953   0.000      1.388        0.354 

A     27       **  0.707     7.819   0.005      0.816        0.287 

A     28        *  0.750     5.862   0.015      0.675        0.272 

A     29      ***  0.704     7.980   0.005      0.825        0.286 

A     30        *  0.769     3.845   0.050      0.618        0.305 

A     31       **  0.743     6.730   0.009      0.698        0.263 

A     32        *  0.762     5.551   0.018      0.640        0.266 

A     33        *  0.749     6.193   0.013      0.681        0.268 

A     34           0.976     0.007   1.000      0.058        0.360 

A     35           0.790     1.975   0.160      0.555        0.375 

A     36           0.832     1.310   0.252      0.432        0.354 

A     37        *  0.721     5.148   0.023      0.770        0.329 

A     38        *  0.678     4.062   0.044      0.914        0.433 

A     39           0.804     2.490   0.115      0.512        0.312 

A     40      ***  0.664    11.542   0.001      0.963        0.279 

 

No. of items purged in pass 1 = 5 

Item Numbers: 

1 

2 

3 

4 

5 

 

 

 One should probably combine the first two score groups (0-3 and 4-7) into one group and the last three groups into 

one group so that sufficient sample size is available for the comparisons of the two groups.  This would, of course, 

reduce the number of groups from 11 in our original specifications to 8 score groups.  The chi-square statistic 

identifies items you will want to give specific attention.  Examine the data plots for those items.  Differences found 

may suggest bias in those items.  Only examination of the actual content can help in this decision.  Even though two 

groups may differ in their item response patterns does not provide sufficient grounds to establish bias - perhaps it 

simply identifies a true difference in educational achievement due to other factors. 

 

Adjustment of Reliability For Variance Change 

 

 Researchers will sometimes use a test that has been standardized on a large, heterogenous population of 

subjects.  Such tests typically report rather high internal-consistency reliability estimates (e.g. Cronbach's estimate.)  
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But what is the reliability if one administers the test to a much more homogeneous population?  For example, 

assume a high school counselor administers a "College Aptitude Test" that reports a reliability of 0.95 with a 

standard deviation of 15 (variance of 225) and a mean of 20.0 for the national norm.  What reliability would the 

counselor expect to obtain for her sample of students that obtain a mean of 22.8 and a standard deviation of 10.2 

(variance of 104.04)?  This procedure will help provide the estimate.  Shown below is the specification form and our 

sample values entered.  When the compute button is clicked, the results shown are obtained. 

 

 

Fig. 11.18   Reliability Adjustment for Variability Dialog 

Polytomous DIF Analysis 

 
 The purpose of the differential item functioning programs are to identify test or attitude items that "perform" 

differently for two groups - a target group and a reference group.  Two procedures are provided and selected on the 

basis of whether the items are dichotomous (0 and 1 scoring) or consist of multiple categories (e.g. Likert responses 

ranging from 1 to 5.)  The latter case is where the Polytomous DIF Analysis is selected.  When you initiate this 

procedure you will see the dialogue box shown below: 

 

 

Fig. 11.19  Polytomous Item Differential Item Functioning Dialog 

 The results from an analysis of three items with five categories that have been collapsed into three category levels is 

shown below.  A sample of 500 subject's attitude scores were observed. 

 
Polytomous Item DIF Analysis adapted by Bill Miller from 

Procedures for extending item bias detection techniques 

by Catherine Welch and H.D. Hoover, 1993 

Applied Measurement in Education 6(1), pages 1-19. 

 

Conditioning Levels 

Lower        Upper 
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    0            1 

    2            3 

    4            4 

 

Observed Category Frequencies 

Item  Group  Level  Category Number 

                        0         1         2         3 

  1   Ref.    1         0        55        56        40 

  1   Focal   1         0        50        47        38 

  1   Total   1         0       105       103        78 

 

  1   Ref.    2         0         2         0         0 

  1   Focal   2         0         1         0         0 

  1   Total   2         0         3         0         0 

 

  1   Ref.    3         0         3         3         0 

  1   Focal   3         0         5         0         0 

  1   Total   3         0         8         3         0 

 

t-test values for Reference and Focus Means for each level 

Mean Reference =      1.901 SD =     14.006 N =   151 

Mean Focal     =      1.911 SD =     13.338 N =   135 

Level   1 t =    0.006 with deg. freedom =   284 

Mean Reference =      2.000 SD =      2.000 N =     2 

Mean Focal     =      1.000 SD =      1.000 N =     1 

Level   2 t =    0.000 with deg. freedom =     0 

Mean Reference =      1.500 SD =      2.510 N =     6 

Mean Focal     =      1.000 SD =      2.236 N =     5 

Level   3 t =   -0.313 with deg. freedom =     9 

Composite z statistic = -0.134. Prob. > |z| =  0.553 

Weighted Composite z statistic = -0.030. Prob. > |z| =  0.512 

Generalized Mantel-Haenszel =      0.008 with D.F. = 1 and Prob. > Chi-Sqr. =  1.000 

 

Fig. 11.20   Level Means for Polytomous Item 

For Item 2: 
 
Observed Category Frequencies 

Item  Group  Level  Category Number 

                        0         1         2         3 

  2   Ref.    1         0        63        53        48 

  2   Focal   1         0        44        46        50 

  2   Total   1         0       107        99        98 

 

  2   Ref.    2         0         2         0         0 

  2   Focal   2         0         1         0         0 

  2   Total   2         0         3         0         0 

 

  2   Ref.    3         0         5         1         0 

  2   Focal   3         0         2         3         0 

  2   Total   3         0         7         4         0 

 

t-test values for Reference and Focus Means for each level 

Mean Reference =      1.909 SD =     14.725 N =   164 

Mean Focal     =      2.043 SD =     15.248 N =   140 
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Level   1 t =    0.078 with deg. freedom =   302 

Mean Reference =      2.000 SD =      2.000 N =     2 

Mean Focal     =      1.000 SD =      1.000 N =     1 

Level   2 t =    0.000 with deg. freedom =     0 

Mean Reference =      1.167 SD =      2.041 N =     6 

Mean Focal     =      1.600 SD =      2.608 N =     5 

Level   3 t =    0.279 with deg. freedom =     9 

Composite z statistic =  0.156. Prob. > |z| =  0.438 

Weighted Composite z statistic =  0.735. Prob. > |z| =  0.231 

Generalized Mantel-Haenszel =      2.480 with D.F. = 1 and Prob. > Chi-Sqr. =  0.115 

 

 

 

Fig. 11.21 Level Means 

Observed Category Frequencies 

Item  Group  Level  Category Number 

                        0         1         2         3 

  3   Ref.    1         0        39        46        55 

  3   Focal   1         0        46        49        41 

  3   Total   1         0        85        95        96 

 

  3   Ref.    2         0         2         0         0 

  3   Focal   2         0         1         0         0 

  3   Total   2         0         3         0         0 

 

  3   Ref.    3         0         4         2         0 

  3   Focal   3         0         3         2         0 

  3   Total   3         0         7         4         0 

t-test values for Reference and Focus Means for each level 

Mean Reference =      2.114 SD =     16.223 N =   140 

Mean Focal     =      1.963 SD =     13.964 N =   136 

Level   1 t =   -0.082 with deg. freedom =   274 

Mean Reference =      2.000 SD =      2.000 N =     2 

Mean Focal     =      1.000 SD =      1.000 N =     1 

Level   2 t =    0.000 with deg. freedom =     0 

Mean Reference =      1.333 SD =      2.066 N =     6 

Mean Focal     =      1.400 SD =      1.949 N =     5 

Level   3 t =    0.049 with deg. freedom =     9 

Composite z statistic = -0.014. Prob. > |z| =  0.506 

Weighted Composite z statistic = -0.657. Prob. > |z| =  0.744 

Generalized Mantel-Haenszel =      2.279 with D.F. = 1 and Prob. > Chi-Sqr. =  

0.131
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Generate Test Data 

 

 To help you become familiar with some of the measurement procedures, you can experiment by creating “artificial” 

item responses to a test.  When you select the option to generate simulated test data, you complete the information in 

the following specification form.  An example is shown.  Before you begin, be sure you have closed any open file 

already in the data grid since the data that is generated will be placed in that grid. 

 

 

Fig. 11.22    Test Item Generation Dialog 

Shown below is a “snap-shot” of the generated test item responses.  An additional row has been inserted for the first 

case which consists of all 1’s.  It will serve as the “correct” response for scoring each of the item responses of the 

subsequent cases.  You can save your generated file for future analyses or other work. 

 

 

Fig. 11.23   Generated Item Data in the Main Grid 

Notice that in our example we specified the creation of test data that would have a reliability of 0.8 for 30 items 

administered to 100 students.  If we analyze this data with our Classical Test Analysis procedure, we obtain the 

following output: 

 

Alpha Reliability Estimate for Test = 0.9100  S.E. of Measurement =    2.365 

 

Clearly, the test generated from our population specifications yielded a somewhat higher reliability than the 0.8 

specified for the reliability.  Have we learned something about sampling variability?  If you request that the total be 

placed in the data grid when you use analyze the test, you can also use the descriptive statistics procedure to obtain 

the sample mean, etc. as shown below: 

 

DISTRIBUTION PARAMETER ESTIMATES 
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TOTAL (N = 100)  Sum =       1597.000 

Mean =     15.970  Variance =     62.151  Std.Dev. =      7.884 

Std.Error of Mean =      0.788 

95.00 percent Confidence Interval for the mean =   14.406 to   17.534 

Range =     29.000  Minimum =      1.000  Maximum =     30.000 

Skewness =     -0.235  Std. Error of Skew =      0.241 

Kurtosis =     -1.008  Std. Error Kurtosis =      0.478 

 

First Quartile =    9.000 

Median =   18.000 

Third Quartile =   22.000 

Interquartile range =   13.000 

 

The frequencies procedure can plot the total score distribution of our sample with the normal curve as a reference to 

obtain: 

 

 

Fig. 11.24   Plot of Generated Test Data 

A test of normality of the total scores suggests a possibility that the obtained scores are not normally distributed as 

shown in the normality test form below: 

 

 

Fig. 11.25  Test of Normality for Generated Data 
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Spearman-Brown Reliability Prophecy 

 

The Spearman-Brown "Prophecy" formula has been a corner-stone of many instructional text books in measurement 

theory.  Based on "Classical True-Score" theory, it provides an estimate of what the reliability of a test of a different 

length would be based on the initial test's reliability estimate.  It assumes the average difficulty and inter-item 

covariances of the extended (or trimmed) test are the same as the original test.  If these assumptions are valid, it is a 

reasonable estimator.  Shown below is the specification form which appears when you elect this Measurement 

option from the Analyses menu: 

 

 

Fig. 11.26  Spearman-Brown Prophecy Dialog 

 

You can see that in an example, that when a test with an initial reliability of 0.8 is doubled (the multiplier k = 2) that 

the new test is expected to have a reliability of 0.89 approximately.  The program may be useful for reducing a test 

(perhaps by randomly selecting items to delete) that requires too long to administer and has an initially high internal 

consistency reliability estimate.  For example, assume a test of 200 items has a reliability of .95.  What is the 

estimate if the test is reduced by one-half?  If the new reliability of 0.9 is satisfactory,  considerable time and money 

may be saved! 

 

Course Grades System 

 

 The grade book system is designed for teachers.  The teacher can enter information for each student in a course and 

their raw scores obtained on each test administered during the term.  Procedures are built into the grade book system 

to automatically convert raw test scores into standard (z) scores, ranks and letter grades.  When the Grade Book 

System is first started, you will see the following screen: 

 



Statistics and Measurement Concepts for LazStats   William G. Miller ©2012 

 

 426 

 

Fig. 11.27   Grading System Dialog with an Opened Grade Book 

 The teacher can click on the Files menu and create a new grade book after entering name information and the first 

test scores. When the teacher clicks on the compute button to specify grading a test, the following dialog box 

appears in which information about the test is recorded: 

 

 

 

Fig. 11.28   Grading System Test Specification Dialog 

 To specify the assignment of grades, the top score for each grade interval is entered and the enter key pressed.  

Clicking the compute button on this form automatically generates z, T and percentile ranks for the students.  Upon 

completion, the following summary is given: 

  
Test Analysis Results 

Mean =    67.83, Variance =  804.567, Std.Dev. =   28.365 

 

Kuder-Richardson Formula 21 Reliability Estimate = 0.9827 

 

PERCENTILE RANKS 

Score Value   Frequency   Cum.Freq. Percentile Rank 

___________   __________  __________ ______________ 

    23.000       1.00       1.00        8.33 
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    55.000       1.00       2.00       25.00 

    56.000       1.00       3.00       41.67 

    86.000       1.00       4.00       58.33 

    88.000       1.00       5.00       75.00 

    99.000       1.00       6.00       91.67 

 

 When a test is added, the grid is expanded to include columns for raw scores, z scores, ranks and letter grade.  

Clicking the Add Student button adds a new row for student information.  Students may be added or deleted at any 

time.  Simply place the cursor in the row where a student is to be deleted or added.  One can also alphabetize the 

grid on the student last names.  If students are added or deleted, the user can recalculate the z scores, ranks and 

grades if desired.   

 

 The teacher can also request a class report or individual student reports.  Shown below is a class report for the 

sample data above. 

 
Class Report 

Report for: Bill G Miller 

 

TEST      RAW       Z         T          PERCENTILE GRADE 

 NO.      SCORE     SCORE     SCORE      RANK 

  1           86    0.640     56.400     58.330     B 

 

 

Report for: Barb L Benton 

 

TEST      RAW       Z         T          PERCENTILE GRADE 

 NO.      SCORE     SCORE     SCORE      RANK 

  1           88    0.711     57.100     75.000     B 

 

 

Report for: Clark A Kent 

 

TEST      RAW       Z         T          PERCENTILE GRADE 

 NO.      SCORE     SCORE     SCORE      RANK 

  1           56   -0.417     45.800     41.670     F 

 

 

Report for: Michelle C Obama 

 

TEST      RAW       Z         T          PERCENTILE GRADE 

 NO.      SCORE     SCORE     SCORE      RANK 

  1           99    1.099     61.000     91.670     A 

 

 

Report for: George H Bush 

 

TEST      RAW       Z         T          PERCENTILE GRADE 

 NO.      SCORE     SCORE     SCORE      RANK 

  1           23   -1.581     34.200      8.330     F 

 

 

Report for: Bill E Clinton 

 

TEST      RAW       Z         T          PERCENTILE GRADE 

 NO.      SCORE     SCORE     SCORE      RANK 

  1           55   -0.452     45.500     25.000     F 
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Item Banking 

 

 The item banking procedure allows the user to explore the concepts of creating a bank of test 

items.  The items stored can then be used to create a printed test to administer to students.  A variety of 

item types may be stored and subsequently selected for a test based on a classification scheme for the 

content of the items.  The type of items that can be included are true-false, multiple choice, matching and 

essay (or short answer.)   

 To use the item banking procedure, go to the Measurement option in LazStats and click on the 

Item Banking option.  A sample item bank labeled “testitembank.BNK” has been created and opened with 

the following dialogue which appears: 

 

 

Fig. 11.29  Item Banking Dialogue 

Notice that when you open an item bank that you have created, it will be saved with the extension “BNK” 

and not the usual “TEX” used for a data file.  You will have to drop down the type of file from the usual 

“*.TEX” to all files (*.*) to see the files with the .BNK extension.  These files contain a variety of 
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information regarding your item bank including the items themselves, the classification codes for the 

contents of items, any test specification, etc..  Notice that once you have opened or created a data file, there 

are three major “drop-down” menus at the top of the item banking dialogue.  The “Item Bank” menu 

includes options to open an item bank, create a new item bank, save an item bank or exit the procedure.  

The “Operations” menu lets you display all items, create a coding scheme for the items, or create items of a 

specific type.  The “Test Options” menu lets you specify the items for a test, list items for a test or print the 

test that was specified. 

 To demonstrate some of these options, the information below was obtained by selecting the 

Operations menu item to display all item codes: 

============================================================= 

Current Item Coding Scheme 

Code number 1 

Major Code 1 

Minor Code 0 

Description Descriptive Statistics 

 

Code number 2 

Major Code 1 

Minor Code 1 

Description Mean 

 

Code number 3 

Major Code 1 

Minor Code 2 

Description Median 

 

Code number 4 

Major Code 1 

Minor Code 3 

Description Mode 

 

Code number 5 

Major Code 1 

Minor Code 4 

Description Variance 

. . . (etc.) 

Code number 52 

Major Code 7 

Minor Code 4 

Description Attitude Measurement 

 

Code number 53 

Major Code 7 

Minor Code 5 

Description Composite Test Reliability 

 

Notice that each code has a “Major Code” and a “Minor Code” followed by a short description of the 

corresponding content of the item using that code. 
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 Now we will examine a sample test specification using the “Test Options” item to list all items: 

 

============================================================== 

Item number: 1 

Major code: 7 

Minor code: 2 

Item type: MC 

Item number: 2 

Major code: 1 

Minor code: 0 

Item type: MC 

Item number: 1 

Major code: 1 

Minor code: 0 

Item type: TF 

Item number: 2 

Major code: 1 

Minor code: 1 

Item type: TF 

Item number: 1 

Major code: 1 

Minor code: 0 

Item type: Essay 

Item number: 2 

Major code: 1 

Minor code: 1 

Item type: Essay 

Item number: 1 

Major code: 1 

Minor code: 0 

Item type: Matching 

 

Notice that the listing only specifies an item number, Major and Minor codes and an item type.  This is the 

list that is used to actually print a test.  Using the above specifications for a test, we will now select to print 

a test and show the first page of the generated test: 

============================================================== 

Directions: This test may contain a variety of different item types. 

For each item, circle the correct answer or provide the answer if 

required.  You may use the back of the test to provide answers to 

essay questions - just start with the item number. 

Start now! 

 

MULTIPLE CHOICE ITEMS: 

Item 1 

Which of the following statements is false? 

A. Interval measured data can be correctly analyzed with parametric procedures. 
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B. Ordinal measured data are analyzed using non-parametric procedures. 

C. Nominal measured data can be analyzed with parametric procedures. 

 

Item 2 

Reference picture = C:\Users\wgmiller\LazStats\HelpFiles\Type1&2Plot.jpg 

Type I error is 

A. Incorrect sampling. 

B. Incorrect research design. 

C. Inadequate measurement scale type. 

D. Probability of rejecting a true null hypothesis by random sampling variability. 

E. Probability of accepting a false null hypothesis by random sampling variability. 

 

 

TRUE OR FALSE ITEMS: 

Item 3 

In a highly skewed distribution, the best indicator of central tendency is the mean. 

A.  TRUE 

B.  False 

Item 4 

The sum of squared X values is the same as the square of the sum of X values. 

A.  TRUE 

B.  False 

 

ESSAY ITEMS: 

Item 5 

Expand and simplify the expression sum of (X - Mean)^2 

Item 6 

Describe kurtosis, mesokurtic, platykurtic 

 

MATCHING ITEMS: 

Item 7 

A. Normal     1. Monte Carlo Distributions 

B. Poisson     2. Theoretical distributions 

C. Binomial 

D. Beta 

E. Gamma 
 You can alter the printing on the output page before actually printing the test if you desire.   

 Now we will display the form used to create a new true or false item.  We will select the option to 

“Create or Edit True-False Items” under the “Options” menu: 
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Fig. 11.30  The True or False Item Editing or Creation Dialogue 

 In the form above you will notice the first previously saved true or false item is displayed.  This 

permits you to edit that item if desired and save it with the “Save this item” button.  If you click the 

“Browse Items” button you will see all items of this type: 

Current Items 

 

Item number   1 

Major Code   1 

Minor Code   0 

Item Stem In a highly skewed distribution, the best indicator of central tendency is the 

mean. 

Correct Choice F 

Graphic Image none 

 

Item number   2 

Major Code   1 

Minor Code   1 

Item Stem The sum of squared X values is the same as the square of the sum of X values. 

Correct Choice F 
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Graphic Image none 

 

Clicking the “Show Next Item” will take you to the next item previously saved or you can click the “Start a 

New Item” option to enter a new item and then save it.   

 Also on each item creation menu there is an option to associate a “.jpg” graphic file with the item.  

When you print a test, a reference to that item is printed as part of the item (See the first item in the above 

sample test.)  If you save the output of the printed test in a file, you can later open that file in your word 

processor and insert the graphic image where the reference occurs. 

 We encourage you to “play” with this procedure to explore the capabilities of an item banking 

process! 
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Chapter 12.   Statistical Process Control 

XBAR Chart 

 

An Example 

 

We will use the file labeled boltsize.txt to demonstrate the XBAR Chart procedure.  Load the file and select 

the option Statistics / Statistical Process Control / Control Charts / XBAR Chart from the menu.  The file 

contains two variables, lot number and bolt length.  These values have been entered in the specification 

form which is shown below.  Notice that the form also provides the option to enter and use a specific 

“target” value for the process as well as specification levels which may have been provided as guidelines 

for determining whether or not the process was in control for a given sample. 

 

Fig. 12.1 XBAR Chart Dialog 

Pressing the Compute button results in the following: 

 
X Bar Chart Results 

 

Group Size Mean      Std.Dev. 

_____ ____ _________ __________ 

   1   5    19.88      0.37 

   2   5    19.90      0.29 

   3   5    20.16      0.27 

   4   5    20.08      0.29 

   5   5    19.88      0.49 

   6   5    19.90      0.39 

   7   5    20.02      0.47 

   8   5    19.98      0.43 
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Grand Mean =    19.97, Std.Dev. =    0.359, Standard Error of Mean =     

0.06 

Lower Control Limit =   19.805, Upper Control Limit =   20.145 
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Fig. 12.2 XBAR Chart for Boltsize 

If, in addition, we specify a target value of 20 for our bolt and upper and lower specification levels 

(tolerance) of 20.1 and 19.9, we would obtain the chart shown below: 
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Fig. 12.3 XBAR Chart Plot with Target Specifications 

In this chart we can see that the mean of the samples falls slightly below the specified target value and that 

samples 3 and 5 appear to have bolts outside the tolerance specifications. 

 

Range Chart 

 

As tools wear the products produced may begin to vary more and more widely around the values 

specified for them.  The mean of a sample may still be close to the specified value but the range of values 

observed may increase.  The result is that more and more parts produced may be under or over the specified 

value.  Therefore quality assurance personnel examine not only the mean (XBAR chart) but also the range 

of values in their sample lots.  Again, examine the boltsize.txt file with the option Statistics / Statistical 

Process Control / Control Charts / Range Chart.  Shown below is the specification form and the results: 

 

 

Fig.12.4 Range Chart Dialog 

X Bar Chart Results 

 

Group Size Mean      Range   Std.Dev. 

_____ ____ _________ _______ ________ 

   1   5    19.88      0.90      0.37 

   2   5    19.90      0.70      0.29 

   3   5    20.16      0.60      0.27 

   4   5    20.08      0.70      0.29 

   5   5    19.88      1.20      0.49 

   6   5    19.90      0.90      0.39 

   7   5    20.02      1.10      0.47 

   8   5    19.98      1.00      0.43 

Grand Mean =    19.97, Std.Dev. =    0.359, Standard Error of Mean =     

0.06 

Mean Range =     0.89 

Lower Control Limit =    0.000, Upper Control Limit =    1.876 
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Fig. 12.5  Range Chart Plot 

In the previous analysis using the XBAR chart procedure we found that the means of lots 3 and 6 were a 

meaningful distance from the target specification.  In this chart we observed that lot 3 also had a larger 

range of values.  The process appears out of control for lot 3 while for lot 6 it appears that the process was 

simply requiring adjustment toward the target value.  In practice we would more likely see a pattern of 

increasing ranges as a machine becomes “loose” due to wear even though the averages may still be “on 

target”. 

 

S Control Chart 

 

 The sample standard deviation, like the range, is also an indicator of how much values vary in a 

sample.  While the range reflects the difference between largest and smallest values in a sample, the 

standard deviation reflects the square root of the average squared distance around the mean of the values.  

We desire to reduce this variability in our processes so as to produce products as similar to one another as 

is possible.  The S control chart plot the standard deviations of our sample lots and allows us to see the 

impact of adjustments and improvements in our manufacturing processes. 

 

 Examine the boltsize.txt data with the S Control Chart.  Shown below is the specification form for 

the analysis and the results obtained: 
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Fig. 12.6  Sigma Chart Dialog 

Group Size Mean      Std.Dev. 

_____ ____ _________ ________ 

   1   5    19.88      0.37 

   2   5    19.90      0.29 

   3   5    20.16      0.27 

   4   5    20.08      0.29 

   5   5    19.88      0.49 

   6   5    19.90      0.39 

   7   5    20.02      0.47 

   8   5    19.98      0.43 

Grand Mean =    19.97, Std.Dev. =    0.359, Standard Error of Mean =     

0.06 

Mean Sigma =     0.37 

Lower Control Limit =    0.000, Upper Control Limit =    0.779 
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Fig. 12.7  Sigma Chart Plot 

 

The pattern of standard deviations is similar to that of the Range Chart.  
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CUSUM Chart 

 

 The specification form for the CUSUM chart is shown below for the data file labeled boltsize.txt.  

We have specified our desire to detect shifts of 0.02 in the process and are using the 0.05 and 0.20 

probabilities for the two types of errors. 

 

 

 

Fig. 12.8  CUMSUM Chart Dialog 

 
CUMSUM Chart Results 

 

Group Size Mean      Std.Dev.  Cum.Dev. of 

                               mean from Target 

_____ ____ ________  ________  ___________ 

   1   5    19.88     0.37         -0.10 

   2   5    19.90     0.29         -0.18 

   3   5    20.16     0.27          0.00 

   4   5    20.08     0.29          0.10 

   5   5    19.88     0.49          0.00 

   6   5    19.90     0.39         -0.08 

   7   5    20.02     0.47         -0.04 

   8   5    19.98     0.43         -0.04 

Mean of group deviations = -0.005 

Mean of all observations = 19.975 

Std. Dev. of Observations =    0.359 

Standard Error of Mean =    0.057 

Target Specification = 19.980 

Lower Control Limit =   19.805, Upper Control Limit =   20.145 
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Fig. 12.9  CUMSUM Chart Plot 

The results are NOT typical in that it appears that we have a process that is moving into control instead of 

out of control.  Movement from lot 1 to 2 and from lot 3 to 4 indicate movement to out-of-control while the 

remaining values appear to be closer to in-control.  If one checks the “Use the target value:” (of 20.0) the 

mask would indicate that lot 3 to 4 had moved to an out-of-control situation. 
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p Chart 

 

 To demonstrate the p Chart we will utilize a file labeled pchart.txt.  Load the file and select the 

Analyses / Statistical Process Control / p Chart option.  The specification form is shown below along with 

the results obtained after clicking the Compute Button: 

 

 

Fig. 12.10  p Control Chart Dialog 

Target proportion = 0.0100 

Sample size for each observation =   1000 

Average proportion observed = 0.0116 

Defects p Control Chart Results 

 

Sample No.  Proportion 

__________  __________ 

       1         0.012 

       2         0.015 

       3         0.008 

       4         0.010 

       5         0.004 

       6         0.007 

       7         0.016 

       8         0.009 

       9         0.014 

      10         0.010 

      11         0.005 

      12         0.006 

      13         0.017 

      14         0.012 

      15         0.022 

      16         0.008 
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      17         0.010 

      18         0.005 

      19         0.013 

      20         0.011 

      21         0.020 

      22         0.018 

      23         0.024 

      24         0.015 

      25         0.009 

      26         0.012 

      27         0.007 

      28         0.013 

      29         0.009 

      30         0.006 

Target proportion = 0.0100 

Sample size for each observation =   1000 

Average proportion observed = 0.0116 

 

 

Fig. 12.11  p Control Chart Plot 

Several of the sample lots (N = 1000) had disproportionately high defect rates and would bear further 

examination of what may have been occurring in the process at those points. 

 

Defect (Non-conformity) c Chart 

 

 The previous section discusses the proportion of defects in samples (p Chart.)  This section 

examines another defect process in which there is a count of defects in a sample lot.  In this chart it is 

assumed that the occurrence of defects are independent, that is, the occurrence of a defect in one lot is 

unrelated to the occurrence in another lot.  It is expected that the count of defects is quite small compared to 

the total number of parts potentially defective.  For example, in the production of light bulbs, it is expected 
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that in a sample of 1000 bulbs, only a few would be defective.  The underlying assumed distribution model 

for the count chart is the Poisson distribution where the mean and variance of the counts are equal.  

Illustrated below is an example of processing a file labeled cChart.txt. 

 

 

Fig. 12.12 Defect c Chart Dialog 

Defects c Control Chart Results 

 

Sample Number of  

       Noncomformities 

______ _______________ 

   1         7.00 

   2         6.00 

   3         6.00 

   4         3.00 

   5        22.00 

   6         8.00 

   7         6.00 

   8         1.00 

   9         0.00 

  10         5.00 

  11        14.00 

  12         3.00 

  13         1.00 

  14         3.00 

  15         2.00 

  16         7.00 

  17         5.00 

  18         7.00 

  19         2.00 

  20         8.00 

  21         0.00 

  22         4.00 

  23        14.00 

  24         4.00 

  25         3.00 

Total Nonconformities =   141.00 
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No. of samples = 25 

Poisson mean and variance =    5.640 

Lower Control Limit =   -1.485, Upper Control Limit =   12.765 

 

 

Fig. 12.13  Defect Control Chart Plot 

The count of defects for three of the 25 objects is greater than the upper control limit of three standard 

deviations. 
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Defects Per Unit u Chart 

 

 

The specification form and results for the computation following the click of the Compute button are 

shown below: 

 

 

Fig. 12.14  Defects U Chart Dialog 

Sample No Defects Defects Per Unit 

______ __________ ________________ 

   1        36.00        0.80 

   2        48.00        1.07 

   3        45.00        1.00 

   4        68.00        1.51 

   5        77.00        1.71 

   6        56.00        1.24 

   7        58.00        1.29 

   8        67.00        1.49 

   9        38.00        0.84 

  10        74.00        1.64 

  11        69.00        1.53 

  12        54.00        1.20 

  13        56.00        1.24 

  14        52.00        1.16 

  15        42.00        0.93 

  16        47.00        1.04 

  17        64.00        1.42 

  18        61.00        1.36 

  19        66.00        1.47 

  20        37.00        0.82 

  21        59.00        1.31 

  22        38.00        0.84 

  23        41.00        0.91 

  24        68.00        1.51 
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  25        78.00        1.73 

Total Nonconformities =  1399.00 

No. of samples = 25 

Def. / unit mean =    1.244 and variance =    0.166 

Lower Control Limit =    0.745, Upper Control Limit =    1.742 

 

 

Fig. 12.15 Defect Control Chart Plot 

In this example, the number of defects per unit are all within the upper and lower control limits. 
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Chapter 13.  Financial 

The Loan Amortization Procedure 

 

To obtain a loan amortization schedule, click on this option to obtain the following dialog: 

 

 

Fig. 13.1  The Loan Amortization Schedule Dialog 

 

Sum of Years Depreciation 

 

To obtain the sum of years depreciation, click on this option under the Financial menu and fill in 

the blanks of the dialog: 

 

 

Fig. 13.2 The Sum of Years Depreciation dialog 
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Straight Line Depreciation 

 

 For a straight line depreciation, select the dialog from the Financial menu and complete the blanks 

before clicking the compute button: 

 

 

Fig. 13.3  The Straight Line Depreciation Dialog 

 

Double Declining Value 

 

 You can obtain the double declining value by entering values on the dialog for this option under 

the financial menu: 

 

 

Fig. 13.4  The Double Declining Value Dialog 



Statistics and Measurement Concepts for LazStats   William G. Miller ©2012 

 

 451 

Chapter 14.  Matrix Manipulation 
 

Purpose of MatMan 

 

 MatMan was written to provide a platform for performing common matrix and vector operations.  

It is designed to be helpful for the student learning matrix algebra and statistics as well as the researcher 

needing a tool for matrix manipulation.  If you are already a user of the OpenStat program, you can import 

files that you have saved with OpenStat into a grid of MatMan. 

 

Using MatMan 

 

 When you first start the MatMan program, you will see the main program form below.  This form 

displays four "grids" in which matrices, row or column vectors or scalars (single values) may be entered 

and saved.  If a grid of data has already been saved, it can be retrieved into any one of the four grids.  Once 

you have entered data into a grid, a number of operations can be performed depending on the type of data 

entered (matrix, vector or scalar.)  Before performing an operation, you select the grid of data to analyze by 

clicking on the grid with the left mouse button.  If the data in the selected grid is a matrix (file extension of 

.MAT) you can select any one of the matrix operations by clicking on the Matrix Operations "drop-down" 

menu at the top of the form.  If the data is a row or column vector, select an operation option from the 

Vector Operations menu.  If the data is a single value, select an operation from the Scalar Operations menu. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14.1  The MatMan Dialog 

Using the Combination Boxes 

 

 In the upper right portion of the MatMan main form, there are four "Combo Boxes".  These boxes 

each contain a drop-down list of file names.  The top box labeled "Matrix" contains the list of files 
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containing matrices that have been created in the current disk directory and end with an extension of .MAT.  

The next two combo boxes contain similar lists of column or row vectors that have been created and are in 

the current disk directory.  The last contains name of scalar files that have been saved in the current 

directory.  These combo boxes provide documentation as to the names of current files already in use.  In 

addition, they provide a "short-cut" method of opening a file and loading it into a selected grid. 

 

Files Loaded at the Start of MatMan 

 

 Five types of files are loaded when you first start the execution of the MatMan program.  The 

program will search for files in the current directory that have file extensions of .MAT, .CVE, .RVE, .SCA 

and .OPT.  The first four types of files are simply identified and their names placed into the corresponding 

combination boxes of matrices, column vectors, row vectors and scalars.  The last, options, is a file which 

contains only two integers: a 1 if the script should NOT contain File Open operations when it is generated 

or a 0 and a 1 if the script should NOT contain File Save operations when a script is generated or a 0.  Since 

File Open and File Save operations are not actually executed when a script or script line is executed, they 

are in a script only for documentation purposes and may be left out. 

 

Clicking the Matrix List Items 

 

 A list of Matrix files in the current directory will exist in the Matrix "Drop-Down" combination 

box when the MatMan program is first started.  By clicking on one of these file names, you can directly 

load the referenced file into a grid of your selection. 

 

Clicking the Vector List Items 

 

 A list of column and row vector files in the current directory will exist in the corresponding 

column vector or row vector  "Drop-Down" combination boxes when the MatMan program is first started.  

By clicking a file name in one of these boxes, you can directly load the referenced file into a grid of your 

selection. 

 

Clicking the Scalar List Items 

 

When you click on the down arrow of the Scalar "drop-down" combination box, a list of file 

names appear which have been previously loaded by identifying all scalar files in the current directory.  

Also listed are any new scalar files that you have created during a session with MatMan.  If you move your 

mouse cursor down to a file name and click on it, the file by that name will be loaded into the currently 

selected grid or a grid of your choice. 

 

The Grids 

 

 The heart of all operations you perform involve values entered into the cells of a grid.  These 

values may represent values in a matrix, a column vector, a row vector or a scalar.  Each grid is like a 

spreadsheet.  Typically, you select the first row and column cell by clicking on that cell with the left mouse 

key when the mouse cursor is positioned over that cell.  To select a particular grid, click the left mouse 

button when the mouse cursor is positioned over any cell of that grid.  You will then see that the grid 

number currently selected is displayed in a small text box in the upper left side of the form (directly below 

the menus.) 
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Operations and Operands 

 

At the bottom of the form (under the grids) are four "text" boxes labeled Operation, Operand1, 

Operand2 and Operand3.  Each time you perform an operation by use of one of the menu options, you will 

see an abbreviation of that operation in the Operation box.  Typically there will be at least one or two 

operands related to that operation.  The first operand is typically the name of the data file occupying the 

current grid and the second operand the name of the file containing the results of the operation.  Some 

operations involve two grids, for example, adding two matrices.  In these cases, the name of the two grid 

files involved will be in operands1 and operands2 boxes while the third operand box will contain the file 

for the results. 

You will also notice that each operation or operand is prefixed by a number followed by a dash.  

In the case of the operation, this indicates the grid number from which the operation was begun.  The 

numbers which prefix the operand labels indicate the grid in which the corresponding files were loaded or 

saved.  The operation and operands are separated by a colon (:).  When you execute a script line by double 

clicking an operation in the script list, the files are typically loaded into corresponding grid numbers and 

the operation performed. 

 

Menus 

 

The operations which may be performed on or with matrices, vectors and scalars are all listed as 

options under major menu headings shown across the top of the main form.  For example, the File menu, 

when selected, provides a number of options for loading a grid with file data, saving a file of data from a 

grid, etc.  Click on a menu heading and explore the options available before you begin to use MatMan.  In 

nearly all cases, when you select a menu option you will be prompted to enter additional information.  If 

you select an option by mistake you can normally cancel the operation. 

 

Combo Boxes 

 

 Your main MatMan form contains what are known as "Drop-Down" combination boxes located 

on the right side of the form.  There are four such boxes: The "Matrix" box, the "Column Vectors" box, the 

"Row Vectors" box and the "Scalars" box.  At the right of each box is an arrow which, when clicked, 

results in a list of items "dropped-down" into view.  Each item in a box represents the name of a matrix, 

vector or scalar file in the current directory or which has been created by one of the possible menu 

operations.  By clicking on one of these items, you initiate the loading of the file containing the data for 

that matrix, vector or scalar.  You will find this is a convenient alternative to use of the File menu for 

opening files which you have been working with.  Incidentally, should you wish to delete an existing file, 

you may do so by selecting the "edit" option under the Script menu.  The script editor lists all files in a 

directory and lets you delete a file by simply double-clicking the file name! 

 

The Operations Script 

 

 Located on the right side of the main form is a rectangle which may contain operations and 

operands performed in using MatMan.  This list of operations and their corresponding operands is known 

collectively as a "Script".  If you were to perform a group of operations, for example, to complete a 

multiple regression analysis, you may want to save the script for reference or repeated analysis of another 

set of data.  You can also edit the scripts that are created to remove operations you did not intend, change 

the file names referenced, etc.  Scripts may also be printed. 

 

 

Getting Help on a Topic 
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You obtain help on a topic by first selecting a menu item, grid or other area of the main form by placing the 

mouse over the item for which you want information.  Once the area of interest is selected, press the F1 key 

on your keyboard.  If a topic exists in the help file, it will be displayed.  You can press the F1 key at any 

point to bring up the help file.  A book is displayed which may be opened by double clicking it.  You may 

also search for a topic using the help file index of keywords. 

 

Scripts 

 

 Each time an operation is performed on grid data, an entry is made in a "Script" list shown in the 

right-hand portion of the form.  The operation may have one to three "operands" listed with it.  For 

example, the operation of finding the eigenvalues and eigenvectors of a matrix will have an operation of 

SVDInverse followed by the name of the matrix being inverted, the name of the eigenvalues matrix and the 

name of the eigenvectors matrix.  Each part of the script entry is preceded by a grid number followed by a 

hyphen (-).  A colon separates the parts of the entry (:).  Once a series of operations have been performed 

the script that is produced can be saved.  Saved scripts can be loaded at a later time and re-executed as a 

group or each entry executed one at a time.  Scripts can also be edited and re-saved.  Shown below is an 

example script for obtaining multiple regression coefficients. 

 
CURRENT SCRIPT LISTING: 

 

FileOpen:1-newcansas 

1-ColAugment:newcansas:1-X 

1-FileSave:1-X.MAT 

1-MatTranspose:1-X:2-XT 

2-FileSave:2-XT.MAT 

2-PreMatxPostMat:2-XT:1-X:3-XTX 

3-FileSave:3-XTX.MAT 

3-SVDInverse:3-XTX.MAT:1-XTXINV 

1-FileSave:1-XTXINV.MAT 

FileOpen:1-XT.MAT 

FileOpen:2-Y.CVE 

1-PreMatxPostVec:1-XT.MAT:2-Y.CVE:3-XTY 

3-FileSave:3-XTY.CVE 

FileOpen:1-XTXINV.MAT 

1-PreMatxPostVec:1-XTXINV.MAT:3-XTY:4-BETAS 

4-FileSave:4-Bweights.CVE 

 

Print 

 

 To print a script which appears in the Script List, move your mouse to the Script menu and click 

on the Print option.  The list will be printed on the Output Form.  At the bottom of the form is a print button 

that you can click with the mouse to get a hard-copy output. 

 

Clear Script List 

 

 To clear an existing script from the script list, move the mouse to the Script menu and click the 

Clear option.  Note: you may want to save the script before clearing it if it is a script you want to reference 

at a later time. 

 

Edit the Script 
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 Occasionally you may want to edit a script you have created or loaded.  For example, you may see 

a number of Load File or Save File operations in a script.  Since these are entered only for documentation 

and cannot actually be executed by clicking on them, they can be removed from the script.  The result is a 

more compact and succinct script of operations performed.  You may also want to change the name of files 

accessed for some operations or the name of files saved following an operation so that the same operations 

may be performed on a new set of data.  To begin editing a script, move the mouse cursor to the Script 

menu and click on the Edit option.  A new form appears which provides options for the editing.  The list of 

operations appears on the left side of the form and an Options box appears in the upper right portion of the 

form.  To edit a given script operation, click on the item to be edited and then click one of the option 

buttons.  One option is to simply delete the item.  Another is to edit (modify) the item.  When that option is 

selected, the item is copied into an "Edit Box" which behaves like a miniature word processor.  You can 

click on the text of an operation at any point in the edit box, delete characters following the cursor with the 

delete key, use the backspace key to remove characters in front of the cursor, and enter characters at the 

cursor.  When editing is completed, press the return key to place the edited operation back into the script 

list from which it came. 

 Also on the Edit Form is a "Directory Box" and a "Files Box".  Shown in the directory box is the 

current directory you are in.  The files list box shows the current files in that directory.  You can delete a 

file from any directory by simply double-clicking the name of the file in the file list.  A box will pop up to 

verify that you want to delete the selected file.  Click OK to delete the file or click Cancel if you do not 

want to delete the file.   CAUTION!  Be careful NOT to delete an important file like MATMAN.EXE, 

MATMAN.HLP or other system files (files with extensions of .exe, .dll, .hlp, .inf, etc.!  Files which ARE 

safe to delete are those you have created with MatMan.  These all end with an extension of .MAT, .CVE, 

.RVE ,.SCA or .SCR . 

 

Load a Script 

 

 If you have saved a script of matrix operations, you can re-load the script for execution of the 

entire script of operations or execution of individual script items.  To load a previously saved script, move 

the mouse to the Script menu and click on the Load option.  Alternatively, you can go to the File menu and 

click on the Load Script option.  Operation scripts are saved in a file as text which can also be read and 

edited with any word processing program capable of reading ASCII text files.  For examples of scripts that 

perform statistical operations in matrix notation, see the help book entitled Script Examples. 

 

Save a Script 

 

 Nearly every operation selected from one of the menus creates an entry into the script list.  This 

script provides documentation of the steps performed in carrying out a sequence of matrix, vector or scalar 

operations.  If you save the script in a file with a meaningful name related to the operations performed, that 

script may be "re-used" at a later time.  

 

Executing a Script 

 

 You may quickly repeat the execution of a single operation previously performed and captured in 

the script.  Simply click on the script item with the left mouse button when the cursor is positioned over the 

item to execute.  Notice that you will be prompted for the name of the file or files to be opened and loaded 

for that operation.  You can, of course, choose a different file name than the one or ones previously used in 

the script item.  If you wish, you can also re-execute the entire script of operations.  Move your mouse 

cursor to the Script menu and click on the Execute option.  Each operation will be executed in sequence 

with prompts for file names appearing before execution each operation.  Note:  you will want to manually 

save the resulting file or files with appropriate names. 
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Script Options 

 

 File Open and File Save operations may or may not appear in a script list depending on options 

you have selected and saved.  Since these two operations are not executed when a script is re-executed, it is 

not necessary that they be saved in a script (other than for documentation of the steps performed.)  You can 

choose whether or not to have these operations appear in the script as you perform matrix, vector or scalar 

operations.  Move your mouse cursor to the Script menu and click on the Options option.  A pop-up form 

will appear on which you can elect to save or not save the File Open and File Save operations.  The default 

(unchecked) option is to save these operations in a script.  Clicking on an option tells the program to NOT 

write the operation to the script.  Return to the MatMan main form by clicking the Return or Cancel button. 

 

Files 

 

 When MatMan is first started it searches the current directory of your disk for any matrices, 

column vectors, row vectors or scalars which have previously been saved.  The file names of each matrix, 

vector or scalar are entered into a drop-down list box corresponding to the type of data.  These list boxes 

are located in the upper right portion of the main form.  By first selecting one of the four grids with a click 

of the left mouse button and then clicking on one of the file names in a drop-down list, you can 

automatically load the file in the selected grid.  Each time you save a grid of data with a new name, that file 

name is also added to the appropriate file list (Matrix, Column Vector, Row Vector or Scalar.) 

 At the top of the main form is a menu item labeled "Files".  By clicking on the Files menu you will 

see a list of file options as shown in the picture below.  In addition to saving or opening a file for a grid, 

you can also import an OpenStat .txt file, import a file with tab-separated values, import a file with comma 

separated values or import a file with spaces separating the values.  All files saved with MatMan are ASCII 

text files and can be read (and edited if necessary) with any word processor program capable of reading 

ASCII files (for example the Windows Notepad program.) 
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Fig. 14.2  Using the MatMan Files Menu 

Keyboard Input 

 

You can input data into a grid directly from the keyboard to create a file.  The file may be a 

matrix, row vector, column vector or a scalar.  Simply click on one of the four grids to receive your 

keystrokes.  Note that the selected grid number will be displayed in a small box above and to the left of the 

grids.  Next, click on the Files menu and move your cursor down to the Keyboard entry option.  You will 

see that this option is expanded for you to indicate the type of data to be entered.  Click on the type of data 

to be entered from the keyboard.  If you selected a matrix, you will be prompted for the number of rows 

and columns of the matrix.  For a vector, you will be prompted for the type (column or row) and the 

number of elements.  Once the type of data to be entered and the number of elements are known, the 

program will "move" to the pre-selected grid and be waiting for your data entry.  Click on the first cell 

(Row 1 and Column 1) and type your (first) value.  Press the tab key to move to the next element in a row 

or, if at the end of a row, the first element in the next row.  When you have entered the last value, instead of 

pressing the tab key, press the return key.  You will be prompted to save the data.  Of course, you can also 

go to the Files menu and click on the Save option.  This second method is particularly useful if you are 

entering a very large data matrix and wish to complete it in several sessions. 

 

 

File Open 

 

If you have previously saved a matrix, vector or scalar file while executing the  MatMan program, 

it will have been saved in the current directory (where the MatMan program resides.)  MatMan saves data 

of a matrix type with a file extension of .MAT.  Column vectors are saved with an extension of .CVE and 

row vectors saved with an extension of .RVE.  Scalars have an extension of .SCA.  When you click the File 

Open option in the File menu, a dialogue box appears.  In the lower part of the box is an indication of the 

type of file.  Click on this drop-down box to see the various extensions and click on the one appropriate to 

the type of file to be loaded.  Once you have done that, the files listed in the files box will be only the files 

with that extension.  Since the names of all matrix, vector and scalar files in the current directory are also 

loaded into the drop-down boxes in the upper right portion of the MatMan main form, you can also load a 
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file by clicking on the name of the file in one of these boxes.  Typically, you will be prompted for the grid 

number of the grid in which to load the file.  The grid number is usually the one you have previously 

selected by clicking on a cell in one of the four grids. 

 

 

File Save 

 

Once you have entered data into a grid or have completed an operation  producing a new output 

grid, you may save it by clicking on the save option of the File menu.  Files are automatically saved with an 

extension which describes the type of file being saved, that is, with a .MAT, .CVE, .RVE or .SCA 

extension.  Files are saved in the current directory unless you change to a different directory from the save 

dialogue box which appears when you are saving a file.  It is recommended that you save files in the same 

directory (current directory) in which the MatMan program resides.  The reason for doing this is that 

MatMan automatically loads the names of your files in the drop-down boxes for matrices, column vectors, 

row vectors and scalars. 

 

 

Import a File 

 

In addition to opening an existing MatMan file that has an extension of .MAT, .CVE, .RVE or 

.SCA, you may also import a file created by other programs.  Many word processing and spread -sheet 

programs allow you to save a file with the data separated by tabs, commas or spaces.  You can import any 

one of these types of files.  Since the first row of data items may be the names of variables, you will be 

asked whether or not the first line of data contains variable labels. 

You may also import files that you have saved with the OpenStat2 program.  These files have an extension 

of .TXT or .txt when saved by the OpenStat2 program.  While they are ASCII type text files, they contain a 

lot of information such as variable labels, long labels, format of data, etc.  MatMan simply loads the 

variable labels, replacing the column labels currently in a grid and then loads numeric values into the grid 

cells of the grid you have selected to receive the data. 

 

Export a File 

 

You may wish to save your data in a form which can be imported into another program such as 

OpenStat, Excel, MicroSoft Word, WordPerfect, etc.  Many programs permit you to import data where the 

data elements have been separated by a tab, comma or space character.  The tab character format is 

particulary attractive because it creates an ASCII (American Standard Code for Information Interchange) 

file with clearly delineated spacing among values and which may be viewed by most word processing 

programs. 

 

 

Open a Script File 

 

  Once you have performed a number of operations on your data you will notice that each operation 

has been "summarized" in a list of script items located in the script list on the right side of the MatMan 

form.  This list of operations may be saved for later reference or re-execution in a file labeled appropriate to 

the series of operations.  To re-open a script file, go to the File Menu and select the Open a Script File 

option.  A dialogue box will appear.  Select the type of file with an extension of .SCR and you will see the 

previously saved script files listed.  Click on the one to load and press the OK button on the dialogue form.  

Note that if a script is already in the script list box, the new file will be added to the existing one.  You may 

want to clear the script list box before loading a previously saved script.  Clear the script list box by 

selecting the Clear option under the Script Operations menu. 
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Save the Script 

 

Once a series of operations have been performed on your data, the operations performed will be 

listed in the Script box located to the right of the MatMan form.  The series of operations may represent the 

completion of a data analysis such as multiple regression, factor analysis, etc.  You may save this list of 

operations for future reference or re-execution.  To save a script, select the Save Script option from the File 

Menu.  A dialogue box will appear in which you enter the name of the file.  Be sure that the type of file is 

selected as a .SCR file (types are selected in the drop-down box of the dialogue form.)  A file extension of 

.SCR is automatically appended to the name you have entered.  Click on the OK button to complete the 

saving of the script file. 

 

Reset All 

 

Occasionally you may want to clear all grids of data and clear all drop-down boxes of currently 

listed matrix, vector and scalar files.  To do so, click the Clear All option under the Files Menu.  Note that 

the script list box is NOT cleared by this operation.  To clear a script, select the Clear operation under the 

Script Operations menu. 

 

 

Entering Grid Data 

 

 Grids are used to enter matrices, vectors or scalars.  Select a grid for data by moving the mouse 

cursor to the one of the grids and click the left mouse button. Move your mouse to the Files menu at the top 

of the form and click it with the left mouse button.  Bring your mouse down to the Keyboard Input option.  

For entry of a matrix of values, click on the Matrix option.  You will then be asked to verify the grid for 

entry.  Press return if the grid number shown is correct or enter a new grid number and press return.  You 

will then be asked to enter the name of your matrix (or vector or scalar.)  Enter a descriptive name but keep 

it fairly short.  A default extension of .MAT will automatically be appended to matrix files, a .CVE will be 

appended to column vectors, a .RVE appended to row vectors and a .SCA appended to a scalar.  You will 

then be prompted for the number of rows and the number of columns for your data.  Next, click on the first 

available cell labeled Col.1 and Row 1.  Type the numeric value for the first number of your data.  Press the 

tab key to move to the next column in a row (if you have more than one column) and enter the next value.  

Each time you press the tab key you will be ready to enter a value in the next cell of the grid.  You can, of 

course, click on a particular cell to edit the value already entered or enter a new value.  When you have 

entered the last data value, press the Enter key.  A "Save" dialog box will appear with the name you 

previously chose.  You can keep this name or enter a new name and click the OK button.  If you later wish 

to edit values, load the saved file, make the changes desired and click on the Save option of the Files menu. 

 When a file is saved, an entry is made in the Script list indicating the action taken.  If the file name 

is not already listed in one of the drop-down boxes (e.g. the matrix drop-down box), it will be added to that 

list. 

 

Clearing a Grid 

 

Individual grids are quickly reset to a blank grid with four rows and four columns by simply 

moving the mouse cursor over a cell of the grid and clicking the RIGHT mouse button.  CAUTION!  Be 

sure the data already in the grid has been saved if you do not want to lose it! 

 

Inserting a Column 

 

There may be occasions where you need to add another variable or column of data to an existing 

matrix of data.  You may insert a new blank column in a grid by selecting the Insert Column operation 

under the Matrix Operations menu.  First, click on an existing column in the matrix prior to or following 
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the cell where you want the new column inserted.  Click on the Insert Column option.  You will be 

prompted to indicate whether the new column is to precede or follow the currently selected column.  

Indicate your choice and click the Return button. 

 

 

Inserting a Row 

 

There may be occasions where you need to add another subject or row of data to an existing 

matrix of data.  You may insert a new blank row in a grid by selecting the Insert Row operation under the 

Matrix Operations menu.  First, click on an existing row in the matrix prior to or following the cell where 

you want the new row inserted.  Click on the Insert Row option.  You will be prompted to indicate whether 

the new row is to precede or follow the number of the selected row.  Indicate your choice and click the 

Return button. 

 

 

Deleting a Column 

 

To delete a column of data in an existing data matrix, click on the grid column to be deleted and 

click on the Delete Column option under the Matrix Operations menu.  You will be prompted for the name 

of the new matrix to save.  Enter the new matrix name (or use the current one if the previous one does not 

need to be saved) and click the OK button. 

 

 

Deleting a Row 

 

To delete a row of data in an existing data matrix, click on the grid row to be deleted and click on 

the Delete Row option under the Matrix Operations menu.  You will be prompted for the name of the new 

matrix to save.  Enter the new matrix name (or use the current one if the previous one does not need to be 

saved) and click the OK button. 

Using the Tab Key 

 

You can navigate through the cells of a grid by simply pressing the tab key.  Of course, you may also click 

the mouse button on any cell to select that cell for data entry or editing.  If you are at the end of a row of 

data and you press the tab key, you are moved to the first cell of the next row (if it exists.)  To save a file 

press the Return key when located in the last row and column cell. 

 

 

Using the Enter Key 

 

If you press the Return key after entering the last data element in a matrix, vector or scalar, you 

will automatically be prompted to save the file.  A "save" dialogue box will appear in which you enter the 

name of the file to save your data.  Be sure the type of file to be saved is selected before you click the OK 

button. 

 

 

Editing a Cell Value 

 

Errors in data entry DO occur (after all, we are human aren't we?)  You can edit a data element by 

simply clicking on the cell to be edited.  If you double click the cell, it will be highlighted in blue at which 
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time you can press the delete key to remove the cell value or enter a new value.  If you simply wish to edit 

an existing value, click the cell so that it is NOT highlighted and move the mouse cursor to the position in 

the value at which you want to start editing.  You can enter additional characters, press the backspace key 

to remove a character in front of the cursor or press the delete key to remove a character following the 

cursor.  Press the tab key to move to the next cell or press the Return key to obtain the save dialogue box 

for saving your corrections. 

 

Loading a File 

 

Previously saved matrices, vectors or scalars are easily loaded into any one of the four grids.  First select a 

grid to receive the data by clicking on one of the cells of the target grid.  Next, click on the Open File 

option under the Files Menu.  An "open" dialogue will appear which lists the files in your directory.  The 

dialogue has a drop-down list of possible file types.  Select the type for the file to be loaded.  Only files of 

the selected type will then be listed.  Click on the name of the file to load and click the OK button to load 

the file data. 

 

 

Matrix Operations 

 

 Once a matrix of data has been entered into a grid you can elect to perform a number of matrix 

operations.  The figure below illustrates the options under the Matrix Operations menu.  Operations 

include: 

 Row Augment 

 Column Augment 

 Delete a Row 

 Delete a Column 

 Extract Col. Vector from Matrix 

 SVD Inverse 

 Tridiagonalize 

 Upper-Lower Decomposition 

 Diagonal to Vector 

 Determinant 

 Normalize Rows 

 Normalize Columns 

 Premultiply by : Row Vector;  Matrix;Scaler 

 Postmultiply by : Column Vector;  Matrix 

 Eigenvalues and Vectors 

 Transpose 

 Trace 

 Matrix A + Matrix B 

 Matrix A - Matrix B 

 Print 

Printing 

 

 You may elect to print a matrix, vector, scalar or file.  When you do, the output is placed on an 

"Output" form.  At the bottom of this form is a button labeled "Print" which, if clicked, will send the 

contents of the output form to the printer.  Before printing this form, you may type in additional 

information, edit lines, cut and paste lines and in general edit the output to your liking.  Edit operations are 

provided as icons at the top of the form.  Note that you can also save the output to a disk file, load another 

output file and, in general, use the output form as a word processor. 
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Row Augment 

 

 You may add a row of 1's to a matrix with this operation.  When the transpose of such an 

augmented matrix is multiplied times this matrix, a cell will be created in the resulting matrix, which 

contains the number of columns in the augmented matrix. 

 

Column Augmentation 

 

 You may add a column of 1's to a matrix with this operation.  When the transpose of such an 

augmented matrix is multiplied times this matrix, a cell will be created in the resulting matrix, which 

contains the number of rows in the augmented matrix.  The procedure for completing a multiple regression 

analysis often involves column augmentation of a data matrix containing a row for each object (e.g. person) 

and column cells containing independent variable values.  The column of 1's created from the Column 

Augmentation process ends up providing the intercept (regression constant) for the analysis. 

 

 

Extract Col. Vector from Matrix 

 

 In many statistics programs the data matrix you begin with contains columns of data representing 

independent variables and one or more columns representing dependent variables.  For example, in 

multiple regression analysis, one column of data represents the dependent variable (variable to be 

predicted) while one or more columns represent independent variables (predictor variables.)  To analyze 

this data with the MatMan program, one would extract the dependent variable and save it as a column 

vector for subsequent operations (see the sample multiple regression script.)  To extract a column vector 

from a matrix you first load the matrix into one of the four grids, click on a cell in the column to be 

extracted and then click on the Extract Col. Vector option under the Matrix Operations menu. 

 

SVDInverse 

 

 A commonly used matrix operation is the process of finding the inverse (reciprocal) of a 

symmetric matrix.  A variety of methods exist for obtaining the inverse (if one exists.)  A common problem 

with some inverse methods is that they will not provide a solution if one of the variables is dependent (or 

some combination of) on other variables (rows or columns) of the matrix.  One advantage of the "Singular 

Value Decomposition" method is that it typically provides a solution even when one or more dependent 

variables exist in the matrix.  The offending variable(s) are essentially replaced by zeroes in the row and 

column of the dependent variable.  The resulting inverse will NOT be the desired inverse. 

 To obtain the SVD inverse of a matrix, load the matrix into a grid and click on the SVDInverse 

option from the Matrix Operations menu.  The results will be displayed in grid 1 of the main form.  In 

addition, grids 2 through 4 will contain additional information which may be helpful in the analysis.  

Figures 1 and 2 below illustrate the results of inverting a 4 by 4 matrix, the last column of which contains 

values that are the sum of the first three column cells in each row (a dependent variable.) 

 When you obtain the inverse of a matrix, you may want to verify that the resulting inverse is, in 

fact, the reciprocal of the original matrix.  You can do this by multiplying the original matrix times the 

inverse.  The result should be a matrix with 1's in the diagonal and 0's elsewhere (the identity matrix.)  

Figure 3 demonstrates that the inverse was NOT correct, that is, did not produce an identity matrix when 

multiplied times the original matrix. 

 
Figure 1. DepMat.MAT From Grid Number 1 

 

 

                   Columns 

                 Col.1        Col.2        Col.3        Col.4  

Rows 
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    1            5.000       11.000        2.000       18.000  

    2           11.000        2.000        4.000       17.000  

    3            2.000        4.000        1.000        7.000  

    4           18.000       17.000        7.000        1.000  

 

 

 

Figure 2. DepMatInv.MAT From Grid Number 1 

 

 

                   Columns 

                 Col.1        Col.2        Col.3        Col.4  

Rows 

    1            0.584        0.106       -1.764        0.024  

    2            0.106       -0.068       -0.111        0.024  

    3           -1.764       -0.111        4.802        0.024  

    4            0.024        0.024        0.024       -0.024  

 

 

 

 

Figure 3. DepMatxDepMatInv.MAT From Grid Number 3 

 

 

                   Columns 

                 Col.1        Col.2        Col.3        Col.4  

Rows 

    1            1.000        0.000        0.000        0.000  

    2            0.000        1.000        0.000        0.000  

    3            0.000        0.000        1.000        0.000  

    4            1.000        1.000        1.000        0.000  

 

 

NOTE!  This is NOT an Identity matrix. 

 

 

 

 

 

 

 

 

Tridiagonalize 

 

 In obtaining the roots and vectors of a matrix, one step in the process is frequently to reduce a 

symetric matrix to a tri-diagonal form.  The resulting matrix is then solved more readily for the eigenvalues 

and eigenvectors of the original matrix.  To reduce a matrix to its tridiagonal form, load the original matrix 

in one of the grids and click on the Tridiagonalize option under the Matrix Operations menu. 

 

Upper-Lower Decomposition 

 

 A matrix may be decomposed into two matrices: a lower matrix (one with zeroes above the 

diagonal) and an upper matrix (one with zeroes below the diagonal matrix.)  This process is sometimes 

used in obtaining the inverse of a matrix.  The matrix is first decomposed into lower and upper parts and 

the columns of the inverse solved one at a time using a routine that solves the linear equation  A X = B 
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where A is the upper/lower decomposition matrix, B are known result values of the equation and X is 

solved by the routine.  To obtain the LU decomposition, enter or load a matrix into a grid and select the 

Upper-Lower Decomposition option from the Matrix Operations menu. 

 

Diagonal to Vector 

 

 In some matrix algebra problems it is necessary to perform operations on a vector extracted from 

the diagonal of a matrix.  The Diagonal to Vector operation extracts the the diagonal elements of a matrix 

and creates a new column vector with those values.  Enter or load a matrix into a grid and click on the 

Diagonal to Vector option under the Matrix Operations menu to perform this operation. 

 

Determinant 

 

 The determinant of a matrix is a single value characterizing the matrix values.  A singular matrix  

(one for which the inverse does not exist) will have a determinant of zero.  Some ill-conditioned matrices 

will have a determinant close to zero.  To obtain the determinant of a matrix, load or enter a matrix into a 

grid and select the Determinant option from among the Matrix Operations options.  Shown below is the 

determinant of a singular matrix (row/column 4 dependent on columns 1 through 3.) 

 
 

                   Columns 

                 Col.1        Col.2        Col.3        Col.4  

Rows 

    1            5.000       11.000        2.000       18.000  

    2           11.000        2.000        4.000       17.000  

    3            2.000        4.000        1.000        7.000  

    4           18.000       17.000        7.000       42.000  
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                   Columns 

                 Col 1  

Rows 

1 0.000 

 

 

Normalize Rows or Columns 

 

 In matrix algebra the columns or rows of a matrix often represent vectors in a multi-dimension 

space.  To make the results more interpretable, the vectors are frequently scaled so that the vector length is 

1.0 in this "hyper-space" of k-dimensions.  This scaling is common for statistical procedures such as Factor 

Analysis, Principal Component Analysis, Discriminant Analysis, Multivariate Analysis of Variance, etc.  

To normalize the row (or column) vectors of a matrix such as eigenvalues, load the matrix into a grid and 

select the Normalize Rows (or Normalize Columns) option from the Matrix Operations menu. 

 

Pre-Multiply by: 

 

 A matrix may be multiplied by a row vector, another matrix or a single value (scalar.)  When a 

row vector with N columns is multiplied times a matrix with N rows, the result is a row vector of N 

elements.  When a matrix of N rows and M columns is multiplied times a matrix with M rows and Q 

columns, the result is a matrix of N rows and Q columns.  Multiplying a matrix by a scalar results in each 

element of the matrix being multiplied by the value of the scalar. 

 To perform the pre-multiplication operation, first load two grids with the values of a matrix and a 

vector, matrix or scaler.  Click on a cell of the grid containing the matrix to insure that the matrix grid is 

selected.  Next, select the Pre-Multipy by: option and then the type of value for the pre-multiplier in the 

sub-options of the Matrix Operations menu.  A dialog box will open asking you to enter the grid number of 

the matrix to be multiplied.  The default value is the selected matrix grid.  When you press the OK button 

another dialog box will prompt you for the grid number containing the row vector, matrix or scalar to be 

multiplied times the matrix.  Enter the grid number for the pre-multiplier and press return.  Finally, you will 

be prompted to enter the grid number where the results are to be displayed.  Enter a number different than 

the first two grid numbers entered.  You will then be prompted for the name of the file for saving the 

results. 

 

Post-Multiply by: 

 

 A matrix may be multiplied times a column vector or  another matrix.  When a matrix with N rows 

and Q columns is multiplied times a column vector with Q rows, the result is a column vector of N 

elements.  When a matrix of N rows and M columns is multiplied times a matrix with M rows and Q 

columns, the result is a matrix of N rows and Q columns.   

 To perform the post-multiplication operation, first load two grids with the values of a matrix and a 

vector or matrix.  Click on a cell of the grid containing the matrix to insure that the matrix grid is selected.  

Next, select the Post-Multiply by: option and then the type of value for the post-multiplier in the sub-

options of the Matrix Operations menu.  A dialog box will open asking you to enter the grid number of the 

matrix  multiplier.  The default value is the selected matrix grid.  When you press the OK button another 

dialog box will prompt you for the grid number containing the column vector or matrix.  Enter the grid 

number for the post-multiplier and press return.  Finally, you will be prompted to enter the grid number 

where the results are to be displayed.  Enter a number different than the first two grid numbers entered.  

You will then be prompted for the name of the file for saving the results. 

Eigenvalues and Vectors 
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 Eigenvalues represent the k roots of a polynomial constructed from k equations.  The equations are 

represented by values in the rows of a matrix.  A typical equation written in matrix notation might be: 

 

 Y = B X 

 

where X is a matrix of known "independent" values, Y is a column vector of  "dependent" values and B is a 

column vector of coefficients which satisfies specified properties for the solution.  An example is given 

when we solve for "least-squares" regression coefficients in a multiple regression analysis.  In this case, the 

X matrix contains  cross-products of k independent variable values for N cases, Y contains known values 

obtained as the product of the transpose of the X matrix times the N values for subjects and B are the 

resulting regression coefficients.   

 

 In other cases we might wish to transform our matrix X into another matrix V which has the 

property that each column vector is "orthogonal" to (un-correlated) with the other column vectors.  For 

example, in Principal Components analysis, we seek coefficients of vectors that represent new variables 

that are uncorrelated but which retain the variance represented by variables in the original matrix.  In this 

case we are solving the equation 

 

 VXV
T
 =  

  

X is a symmetric matrix and  are roots of the matrix stored as diagonal values of a matrix.  If the columns 

of V are normalized then  V V
T  

= I, the identity matrix. 

 

Transpose 

 

 The transpose of a matrix or vector is simply the creation of a new matrix or vector where the 

number of rows is equal to the number of columns and the number of columns equals the number of rows 

of the original matrix or vector.  For example, the transpose of the row vector [1 2 3 4] is the column 

vector: 

 1 

2 

3 

4 

 

Similarly, given the matrix of values: 

 

 1 2 3 

 4 5 6 

 

the transpose is: 

 

1 4 

2 5 

3 6 

 

You can transpose a matrix by selecting the grid in which your matrix is stored and clicking on the 

Transpose option under the Matrix Operations menu.  A similar option is available under the Vector 

Operations menu for vectors. 

 

Trace 

 

The trace of a matrix is the sum of the diagonal values. 
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Matrix A + Matrix B 

 

 When two matrices of the same size are added, the elements (cell values) of the first are added to 

corresponding cells of the second matrix and the result stored in a corresponding cell of the results matrix.  

To add two matrices, first be sure both are stored in grids on the main form.  Select one of the grid 

containing a matrix and click on the Matrix A + Matrix B option in the Matrix Operations menu.  You will 

be prompted for the grid numbers of each matrix to be added as well as the grid number of the results.  

Finally, you will be asked the name of the file in which to save the results. 

 

Matrix A - Matrix B 

 

 When two matrices of the same size are subtracted, the elements (cell values) of the second are 

subtracted from corresponding cells of the first matrix and the result stored in a corresponding cell of the 

results matrix.  To subtract two matrices, first be sure both are stored in grids on the main form.  Select one 

of the grids containing the matrix from which another will be subtracted and click on the Matrix A - Matrix 

B option in the Matrix Operations menu.  You will be prompted for the grid numbers of each matrix  as 

well as the grid number of the results.  Finally, you will be asked the name of the file in which to save the 

results. 

 

Print 

 

 To print a matrix be sure the matrix is loaded in a grid, the grid selected and then click on the print 

option in the Matrix Operations menu.  The data of the matrix will be shown on the output form.  To print 

the output form on your printer, click the Print button located at the bottom of the output form. 

 

Vector Operations 

 

 A number of vector operations may be performed on both row and column vectors.  Shown below 

is the main form with the Vector Operations menu selected.  The operations you may perform are: 

 Transpose 

 Multiply by Scalar 

 Square Root of Elements 

 Reciprocal of Elements 

 Print 

 Row Vec. x Col. Vec. 

 Col. Vec x Row Vec. 

 

Vector Transpose 

 

The transpose of a matrix or vector is simply the interchange of rows with columns.  Transposing  a matrix 

results in a matrix with the first row being the previous first column, the second row being the previous 

second column, etc.  A column vector becomes a row vector and a row vector becomes a column vector.  

To transpose a vector, click on the grid where the vector resides that is to be transposed.  Select the 

Transpose Option from the Vector Operations menu and click it.  Save the transposed vector in a file when 

the save dialogue box appears. 

 

Multiply a Vector by a Scalar 

 

When you multiply a vector by a scalar, each element of the vector is multiplied by the value of 

that scalar.  The scalar should be loaded into one of the grids and the vector in another grid.  Click on the 
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Multiply by a Scalar option under the Vector Operations menu.  You will be prompted for the grid numbers 

containing the scalar and vector.  Enter those values as prompted and click the return button following 

each.  You will then be presented a save dialogue in which you enter the name of the new vector. 

 

Square Root of Vector Elements 

 

You can obtain the square root of each element of a vector.  Simply select the grid with the vector 

and click the Square Root option under the Vector Operations menu.  A save dialogue will appear after the 

execution of the square root operations in which you indicate the name of your new vector.  Note - you 

cannot take the square root of a vector that contains a negative value - an error will occur if you try. 

 

Reciprocal of Vector Elements 

 

Several statistical analysis procedures involve obtaining the reciprocal of the elements in a vector 

(often the diagonal of a matrix.)  To obtain reciprocals, click on the grid containing the vector then click on 

the Reciprocal option of the Vector Operations menu.  Of course, if one of the elements is zero, an error 

will occur!  If valid values exist for all elements, you will then be presented a save dialogue box in which 

you enter the name of your new vector. 

 

Print a Vector 

 

Printing a vector is the same as printing a matrix, scalar or script.  Simply select the grid to be 

printed and click on the Print option under the Vector Operations menu.  The printed output is displayed on 

an output form.  The output form may be printed by clicking the print button located at the bottom of the 

form.  

 

Row Vector Times a Column Vector 

 

Multiplication of a column vector by a row vector will result in a single value (scalar.)  Each 

element of the row vector is multiplied times the corresponding element of the column vector and the 

products are added.  The number of elements in the row vector must be equal to the number of elements in 

the column vector.  This operation is sometimes called the "dot product" of two vectors.  Following 

execution of this vector operation, you will be shown the save dialogue for saving the resulting scalar in a 

file. 

 

 

Column Vector Times Row Vector 

 

When you multiply a column vector of k elements times a row vector of k elements, the result is a 

k by k matrix.  In the resulting matrix each row by column cell is the product of the corresponding column  

element of the row vector and the corresponding row element of the column vector.  The result is 

equivalent to multiplying a k by 1 matrix times a 1 by k matrix. 

 

 

Scalar Operations 

 

 The operations available in the Scalar Operations menu are: 
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Square Root 

Reciprocal 

Scalar x Scalar 

Print 

 

Square Root of a Scalar 

 

Selecting this option under the Scalar Operations menu results in a new scalar that is the square root of the 

original scalar.  The new value should probably be saved in a different file than the original scalar.  Note 

that you will get an error message if you attempt to take the square root of a negative value. 

 

Reciprocal of a Scalar 

 

You obtain the reciprocal of a scalar by selecting the Reciprocal option under the Scalar 

Operations menu.  You will obtain an error if you attempt to obtain the reciprocal of a value zero.  Save the 

new scalar in a file with an appropriate label. 

 

Scalar Times a Scalar 

 

Sometimes you need to multiply a scalar by another scalar value.  If you select this option from the Scalar 

Operations menu, you will be prompted for the value of the muliplier.  Once the operation has been 

completed you should save the new scalar product in a file appropriately labeled. 

 

Print a Scalar 

 

 Select this option to print a scalar residing in one of the four grids that you have selected.  Notice 

that the output form contains all objects that have been printed.  Should you need to print only one grid's 

data (matrix, vector or scalar) use the Clear All option under the Files menu. 
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